
asdf Cheat Sheet
by j24 via cheatography.com/195607/cs/41793/

Old

Countable.
A set that
is either
finite or
has the
same
cardin​ality
as the set
of positive
integers
(ℤ!) is
called
countable.
To be
countable,
there must
exist a 1-1
and onto
(bijec​tion)
between
the set
and ℕ! (i.e.
ℤ!)

Show that
the set of
positive
even
integers E
is
countable.
Let f(x) =
2x, E =
{1,2,3​,4,...},
f(x) =
{2,4,6​,8,...}.
Then f is a
bijection
from N to E
since f is
both one-to-
one and
onto. To
show that it
is one-to​-
one,
suppose
that f(n) =
f(m).

All integers
between 10
and 10000:
Finite. All
integers less
than 10:
Countably
infinite. S =
{(x,y) | x, y in
N}: Countably
inf. All real
numbers
between 0 and
1: Uncoun​‐
table. All
rational
numbers
between 0 and
1: Countably
inf. All integers
that are
multiples of 8:
Countably inf.

Old (cont)

Induction.
To prove
that P(n) is
true for all
positive
integers n,
we
complete
these
steps: ​
Basis
Step:
Show that
P(1) is
true. ​
Inductive
Step:
Show that
P(k) → P(k
+ 1) is true
for all
positive
integers k.
To
complete
the
inductive
step,
assuming
the
inductive
hypothesis
that P(k)
holds for
an
arbitrary
integer k,
show that
P(k + 1)
must be
true.

Template for Proofs by
Mathem​atical Induction 1.
Express the statement that is
to be proved in the form “for
all n ≥ b, P (n)” for a fixed
integer b. 2. Write out the
words “Basis Step.” Then
show that P (b) is true, taking
care that the correct value of b
is used. This completes the
first part of the proof. 3. Write
out the words “Inductive
Step.” 4. State, and clearly
identify, the inductive hypoth​‐
esis, in the form “assume that
P (k) is true for an arbitrary
fixed integer k ≥ b.” 5. State
what needs to be proved
under the assumption that the
inductive hypothesis is true.
That is, write out what P (k +
1) says. 6. Prove the
statement P (k + 1) making
use the assumption P (k). Be
sure that your proof is valid for
all integers k with k ≥ b, taking
care that the proof works for
small values of k, including k
= b. 7. Clearly identify the
conclusion of the inductive
step, such as by saying “this
completes the inductive step.”
8. After completing the basis
step and the inductive step,
state the conclu​sion, namely
that by mathem​atical
induction, P (n) is true for all
integers n with n ≥ b.

By j24
cheatography.com/j24/

Not published yet.
Last updated 19th December, 2023.
Page 1 of 100.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/j24/
http://www.cheatography.com/j24/cheat-sheets/asdf
http://www.cheatography.com/j24/
https://apollopad.com

asdf Cheat Sheet
by j24 via cheatography.com/195607/cs/41793/

Old (cont)

Strong
Induction:
To prove
that P(n) is
true for all
positive
integers n,
where P(n)
is a
propos​‐
itional
function,
complete
two steps: ​
Basis Step:
Verify that
the propos​‐
ition P(1) is
true. ​
Inductive
Step: Show
the condit​‐
ional
statement ​
[P(1) ∧ P(2)
∧∙∙∙ ∧ P(k)]
→ P(k + 1)
holds for all
positive
integers k.
Ordina​‐
ry/weak
induction •
Rule 1:
P(0) (or
any other
base case)
• Rule 2:
P(n) ->
P(n+1)
Strong
induction •
Rule 1:
P(0) (or
any other
base case)
• Rule 2:
P(1),P(2),
P(3),....P(n)
-> P(n+1)
The
general

Example:
Show that if
n is an
integer
greater than
1, then n can
be written as
the product
of primes.
Solution: Let
P(n) be the
propos​ition
that n can be
written as a
product of
primes. ​
BASIS
STEP: P(2)
is true since
2 itself is
prime. ​
INDUCTIVE
STEP: The
inductive
hypothesis is
P(j) is true
for all
integers j
with 2 ≤ j ≤ k.
To show that
P(k + 1) must
be true under
this assump​‐
tion, two
cases need
to be consid​‐
ered: ​ If k + 1
is prime,
then P(k + 1)
is true. ​
Otherwise, k
+ 1 is
composite
and can be
written as the
product of
two positive
integers a
and b with 2
≤ a ≤ b < k +
1. By the
inductive

Example:
Prove that
every
amount of
postage of
12 cents or
more can be
formed using
just 4-cent
and 5-cent
stamps.
Solution: Let
P(n) be the
propos​ition
that postage
of n cents
can be
formed using
4-cent and 5-
cent stamps.
​ BASIS
STEP: P(12),
P(13), P(14),
and P(15)
hold. ​ P(12)
uses three 4-
cent stamps.
​ P(13) uses
two 4-cent
stamps and
one 5-cent
stamp. ​
P(14) uses
one 4-cent
stamp and
two 5-cent
stamps. ​
P(15) uses
three 5-cent
stamps. ​
INDUCTIVE
STEP: The
inductive
hypothesis
states that
P(j) holds for
12 ≤ j ≤ k,
where k ≥
15.
Assuming
the inductive
hypoth​esis, it

Turing Machine

A Turing
machine T
= (S, I, f, s
0) consists
of ​ a finite
set S of
states, ​ an
alphabet I
that
includes
the blank
symbol B, ​
a partial
function f
from (S ×
I)→ (S × I
×{R,L}) ​ a
starting
state s0 . ​
For some
(state,
symbol)
pairs the
partial
function f
may be
undefined,
but for a
pair for
which it is
defined,
there is a
unique
(state,
symbol,
direction)
triple
associated
to this pair.
​ The five-t​‐
uples
corres​‐
ponding to
the partial
function in
the
definition
of a TM
are called
the
transition
rules of

1. At the
beginning of
its operation a
TM is
assumed to be
in the initial
state s0 and to
be positioned
over the
leftmost
nonblank
symbol on the
tape. This is
the initial
position of the
machine. 2. At
each step, the
control unit
reads the
current tape
symbol x. 3. If
the control unit
is in state s
and if the
partial function
f is defined for
the pair (s, x)
with f(s, x) =
(s′, x′, d), the
control unit: ​
enters the
state s′, ​
writes the
symbol x′ in
the current
cell, erasing x,
and ​ moves
right one cell if
d = R or
moves left one
cell if d = L. 4.
This step is
written as the
five-tuple (s, x,
s′, x′, d).
Turing
machines are
defined by
specifying a
set of such
five-t​uples. If
the partial

Let V be a
subset of an
alphabet I. ​
A TM T =
(S, I, f, s0)
recognizes
a string x in
V if and only
if T, starting
in the initial
position
when x is
written on
the tape,
halts in a
final state. ​
T is said to
recognize a
subset A of
V if it is the
case that a
string x is
recognized
by T if and
only if x
belongs to
A. ​ Note that
to recognize
a subset A
of V* we
can use
symbols not
in V. This
means that
the input
alphabet I
may include
symbols not
in V. We will
see that
these extra
symbols are
used as
markers. ​ A
TM
operating on
a tape
containing
the symbols
of a string x
in consec​‐
utive cells,

Number Theory

Let a = b
mod (m) • a
is the
remainder
when b is
divided by
m
Reflexive:
� ≡ �
mod �
Symmetric:
If � ≡ �
� mod �
�, then �
� ≡ �
mod �
Transi​tivity:
If � ≡ �
� mod �
� and �
≡ � mod
�, then
� ≡ �
mod �
Additive
inverse For
any �,
there exists
a b such
that � +
� = 0
(��� �)
In this
case, the b
is called
the additive
inverse of a
and vice
versa
Multip​lic​‐
ative
inverse.
For any �
� relatively
prime to �
� where
gcd �,
� = 1,
there exists
a � such
that �� =
1 (��� �

Base
Conver​‐
sions
Convert
1011 0111
to decimal,
octal, and
hexade​‐
cimals
Decimal •
2' ∗ 1 + 2(∗
0 + 2) ∗ 1 +
2 ∗ 1 + 2! ∗
0 + 2# ∗ 1 +
(2" ∗ 1) +
(2% ∗ 1) •
183 10 •
183 =
822+7 • 22
= 82+6 • 0
= 80+2 •
267. From
Decimals
to Binary,
Octal and
Hexade​‐
cimals
Convert
24680 to
Binary,
Octal and
Hexade​‐
cimals To
convert to
binary,
divide by 2
repeatedly
and record
the
remainder
at each
stage.
24680 =
212340 + 0
12340 =
26170 + 0
6170 =
23085 + 0
3085 =
21542 + 1
1542 =
2771 + 0

GCD and LCM
Greatest
Common
Divisor (GCD)
– is the largest
number that
divides both a
and b Least
Common
Multiple (LCM)
– Is the
smallest
positive
integer that is
divisible by a
and b To find
LCM
Obviously,
LCM(a,b) is no
more than ab
Start by finding
the prime
factors of a
and b Build
LCM using the
largest power
of each prime
that is in a or
b. Least
Common
Multiple Find
lcm(40,12) •
40 = 2! 5" • 12
= 2# 3" For
each prime
base, use the
largest
exponent
between the
two numbers •
2! 3" 5" = 120
lcm(40​,12​)=12
0 Find lcm(52​‐
92,810) • 5292
= 2# 3! 7# •
810 = 2" 3 5" •
2# 3 5" 7# =
79380 lcm(52​‐
92,​810​)=7​‐
9380. GCD as
a linear
combin​ation If

http://www.cheatography.com/
http://www.cheatography.com/j24/
http://www.cheatography.com/j24/cheat-sheets/asdf

rule. 1. If
P(n+1) can
be proven
from P(n)
only, then
weak/o​‐
rdinary
induction is
sufficient 2.
If P(n+1)
requires
other
propos​‐
itions prior
to P(n)
(e.g. P(n-1)
or P(n-2))
then strong
induction
may be
approp​riate

hypothesis a
and b can be
written as the
product of
primes and
therefore k +
1 can also be
written as the
product of
those
primes.
Hence, it has
been shown
that every
integer
greater than
1 can be
written as the
product of
primes.

can be
shown that
P(k + 1)
holds. ​ Using
the inductive
hypoth​esis,
P(k − 3)
holds since k
− 3 ≥ 12. To
form postage
of k + 1
cents, add a
4-cent stamp
to the
postage for k
− 3 cents.
Hence, P(n)
holds for all n
≥ 12.

the
machine.

function f is
undefined for
the pair (s, x)
then T will
halt. 5. The
Turing
Machine
outputs the
revised tape.

does not
recognize x
if it does not
halt or halts
in a state
that is not
final.

�) In this
case, the b
is called
the multip​‐
lic​ative
inverse of a
and vice
versa. �
≡ � �
��� �
is
equivalent
to � − �
� = ��
for some �
� ∈ ℤ If �
� ≡ �
(��� �)
and c ≡ �
� (��� �
�), then �
�� ≡ ��
(��� �)
Example. 5
~ 3 (mod 2)
Congruent
Class. The
congruent
class of an
integer a,
denoted [a]
is defined
as [a] = { b
in Z | a is
congruent
to b}

771 = 2385
+ 1 385 =
2192 + 1
192 = 296
+ 0 96 =
248 + 0 48
= 224 + 0
24 = 212 +
0 12 = 26 +
0 6 = 23 +
0 3 = 21 +
1 1 = 20 +
1 110000​‐
001​101​‐
000_2.
From
Decimals
to Binary,
Octal and
Hexade​‐
cimals
Convert
24680 to
Binary,
Octal and
Hexade​‐
cimals
24680 =
83085 + 0
3085 =
8385 + 5
385 = 848
+ 1 48 = 86
+ 0 6 =
80+6
60150 8
24680 =
161542+8
1542 =
1696+6
96=166+0
6=160+6
6068_16

a and b are
positive
integers, the
gcd(a, b) can
be written as
gcd(a, b) = am
+ bn for some
integers m and
n. Note.
Multiples of
GCD are
Linear
Combin​ations
of a and b E.g.
write gcd(312,
125) as a
linear combin​‐
ation 312 m +
125 n Solution.
gcd(312, 125)
= gcd(312, 62)
è 312 = 2125 +
62 ---(1)
gcd(312, 62) =
GCD(62, 1) è
125 = 262 + 1 -
--(2) gcd(62,1)
= 1 Using (2).
1 = 125 + (-
2)62 = 125 + (-
2) (312- 2125)
using (1) =
5125 + (-
2)*312.

By j24
cheatography.com/j24/

Not published yet.
Last updated 19th December, 2023.
Page 2 of 100.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/j24/
https://apollopad.com

asdf Cheat Sheet
by j24 via cheatography.com/195607/cs/41793/

FSM FSA NFA

A finite​-
state
machine
M =(S, I,
O, f, g, s
0)
consists
of ​ a
finite set
S of
states ​ a
finite
input
alphabet
I ​ a finite
output
alphabet
O ​ a
transition
function f
that
assigns
to each
state and
input pair
a new
state ​ an
output
function
g that
assigns
to each
state and
input pair
an output
​ an initial
state s 0
. ​ A state
table is
used to
represent
the
values of
the
transition
function f
and the
output
function
g for all
(state,
input). ​

FSMs with no
output, but with
some states
designated as
accepting
states, are
specif​ically
designed for
recogn​izing
languages. ​ A
finite​-state
automaton M =
(S, I, f, s0, F)
consists of a
finite set S of
states, a finite
input alphabet
I, a transition
function f that
assigns a next
state to every
pair of state
and input (so
that f: S × I →
S), an initial or
start state s 0,
and a subset F
of S consisting
of final (or
accepting)
states. ​ FSAs
can be repres​‐
ented using
either state
tables or state
diagrams, in
which final
states are
indicated with a
double circle. ​
A finite state
machine (FSM)
with no output
is called a finite
state automata
(FSA). A string
x is said to be
recognized (or
accepted) by
the machine M
= (S, I, f, s 0, F)
if it takes the

A nondet​‐
erm​inistic
finite​-state
automaton M
= (S, I, f, s 0,
F) consists of
​ A finite set S
of states ​ A
finite input
alphabet I ​ A
transition
function f that
assigns a set
of states to
every pair of
state and
input (so that
f: S × I →
P(S)) ​ An
initial or start
state s0 ​ A
subset F of S
consisting of
final (or
accepting)
states. For
every NFA
there is an
equivalent
DFA. That is,
if the
language L is
recognized
by a NFA M
0, then L is
also
recognized
by a DFA M
1. We
construct the
DFA M 1 so
that ​ The
start symbol
of M 1 is {s
0}. ​ The input
set of M 1 is
the same as
the input set
of M 0. ​ Each
state in M 1
is made from
of a set of

FSM FSA NFA (cont)

A vocabulary (or
alphabet) V is a finite,
nonempty set of
elements called
symbols. A word (or
sentence) over V is a
string of finite length of
elements of V . The
empty string or null
string, denoted by λ, is
the string containing
no symbols. The set of
all words over V is
denoted by V ∗. A
language over V is a
subset of V ∗. A
phrase​-st​ructure
grammar G = (V , T ,
S, P) consists of a
vocabulary V , a
subset T of V
consisting of terminal
symbols, a start
symbol S from V , and
a finite set of pro-
ductions P . The set V
− T is denoted by N.
Elements of N are
called nonter​minal
symbols. Every
production in P must
contain at least one
nonter​minal on its left
side. Let G = (V , T , S,
P) be a phrase​-st​‐
ructure grammar. The
language generated
by G (or the language
of G), denoted by
L(G), is the set of all
strings of terminals
that are derivable from
the starting state S. In
other words, L(G) = {w
∈ T ∗ | S ∗ *⇒ w}.
EXAMPLE 5 Give a
phrase​-st​ructure
grammar that
generates the set
{0n1n | n = 0, 1, 2, . . .
}. The solution is the
grammar G = (V , T ,

A type 0 grammar
has no restri​‐
ctions on its
produc​tions. A
type 1 grammar
can have produc​‐
tions of the form
w1 → w2 , where
w1 = lAr and w2 =
lwr, where A is a
nonter​minal
symbol, l and r
are strings of zero
or more terminal
or nonter​minal
symbols, and w is
a nonempty string
of terminal or
nonter​minal
symbols. It can
also have the
production S → λ
as long as S does
not appear on the
right-hand side of
any other produc​‐
tion. A type 2
grammar can
have produc​tions
only of the form
w1 → w2 , where
w1 is a single
symbol that is not
a terminal
symbol. A type 3
grammar can
have produc​tions
only of the form
w1 → w2 with w1
= A and either w2
= aB or w2 = a,
where A and B
are nonter​minal
symbols and a is
a terminal
symbol, or with
w1 = S and w2 =
λ. EXAMPLE 9 It
follows from
Example 5 that
{0n1n | n = 0, 1, 2,
. . . } is a contex​t-

Relations

A binary
relation R
on a A
and B is
defined
as R is a
subset of
A x B. A
relation is
a subset
of the
cartesian
product
of two
sets A
and B,
which is a
set of
ordered
pairs. A x
B = {(a,1),
(a,2),
(a,3),
(b,1),
(b,2),
(b,3),
(c,1),
(c,2),
(c,3),
(d,1),
(d,2),
(d,3)}. A
relation is
usually
written in
set
format: R
= {(a,2)​,
(b​,1)​,
(c​,1)​,
(d​,3)​,
(c​,2)}.
We say
that a is
related to
2 in one
of the
following
notations:
(a,2) is e
R, or a R
2.

1) A
relation R
on a set A
is called
reflexive if
(a, a) ∈ R
for every
element a
∈ A. 2) A
relation R
on a set A
is called
symmetric
if (b, a) ∈
R
whenever
(a, b) ∈ R,
for all a, b
∈ A. A
relation R
on a set A
such that
for all a, b
∈ A, if (a,
b) ∈ R
and (b, a)
∈ R, then
a = b is
called
antisy​‐
mme​tric.
3) A
relation R
on a set A
is called
transitive
if
whenever
(a, b) ∈ R
and (b, c)
∈ R, then
(a, c) ∈ R,
for all a,
b, c ∈ A.
4) Let R
be a
relation
from a set
A to a set
B and S a
relation
from B to

Because this
relation contains
R, is reflexive,
and is contained
within every
reflexive relation
that contains R, it
is called the
reflexive closure
of R. This new
relation is
symmetric and
contains R.
Furthe​rmore, any
symmetric
relation that
contains R must
contain this new
relation, because
a symmetric
relation that
contains R must
contain (2, 1) and
(1, 3). Conseq​‐
uently, this new
relation is called
the symmetric
closure of R. Let
R be a relation on
a set A. The
connec​tivity
relation R∗
consists of the
pairs (a, b) such
that there is a
path of length at
least one from a
to b in R. The
transitive closure
of a relation R
equals the
connec​tivity
relation R∗. A
relation on a set A
is called an
equiva​lence
relation if it is
reflexive,
symmetric, and
transi​tive. Two
elements a and b
that are related

http://www.cheatography.com/
http://www.cheatography.com/j24/
http://www.cheatography.com/j24/cheat-sheets/asdf

Altern​ati​‐
vely, a
finite​-
state
machine
can be
repres​‐
ented by
a state
diagram,
which is
a
directed
graph
with
labeled
edges.
Each
state is
repres​‐
ented by
a circle,
and
arrows
labeled
with the
input and
output
pair
represent
the
transi​‐
tions. ​
The state
table and
state
diagram
both
represent
the finite
state
machine
with S =
{s 0 ,s 1
,s 2 ,s 3
}, I = {0,
1}, and O
= {0, 1}.

initial state s 0
to a final state,
that is, f(s 0, x).
​ The language
recognized (or
accepted) by
M, denoted by
L(M), is the set
of all strings
that are
recognized by
M. ​ Two finite​-
state automata
are called
equivalent if
they recognize
the same
language. The
final state of M
3 are s 0 and s
3 . The strings
that take s 0 to
itself are λ, 0,
00, 000,... .
The strings that
take s 0 to s 3
are a string of
zero or more
consec​utive 0s,
followed by 10,
followed by any
string. Hence,
L(M 3) = {0n
,0n 10x | n = 0,
1, 2,, and x
is any string}

states in M 0.
Construct
new states in
M 1 by
interp​reting
each unique
output in the
M 0
transition
table as a its
singular own
state, e.g. s !
, 	" , �
�# , ∅ ​
Given a state
{	$! , 	$ "
,..., 	$ # }
in M 1 and
an input
symbol x, the
transi​tions
from this
state to the
next is the
union of
transi​tions
f($! , x), f($
" ,x), ... , f($
,x) from M
0 for the
states that
compose the
state from �
�" ​ The final
states of M 1
are any sets
that contain a
final state of
M 0.

S, P), where V = {0, 1,
S}, T = {0, 1}, S is the
starting symbol, and
the produc​tions are S
→ 0S1 S → λ.

free language,
because the
produc​tions in
this grammar are
S → 0S1 and S →
λ.

a set C.
The
composite
of R and
S is the
relation
consisting
of ordered
pairs (a,
c), where
a ∈ A, c ∈
C, and for
which
there
exists an
element b
∈ B such
that (a, b)
∈ R and
(b, c) ∈ S.
We
denote
the
composite
of R and
S by S
◦R. 5) Let
R be a
relation
on the set
A. The
powers R
n , n = 1,
2, 3, . . . ,
are
defined
recurs​‐
ively by
R1 = R
and R
n+1 = R n
◦ R. 6)
The
relation R
on a set A
is
transitive
if and only
if R n ⊆ R
for n = 1,
2, 3, ...

by an equiva​lence
relation are called
equiva​lent. The
notation a ∼ b is
often used to
denote that a and
b are equivalent
elements with
respect to a
particular equiva​‐
lence relation. Let
R be an equiva​‐
lence relation on
a set A. The set
of all elements
that are related to
an element a of A
is called the
equiva​lence class
of a. The equiva​‐
lence class of a
with respect to R
is denoted by
[a]R . When only
one relation is
under consid​era​‐
tion, we can
delete the
subscript R and
write [a] for this
equiva​lence
class. Let R be an
equiva​lence
relation on a set
A. These
statements for
elements a and b
of A are equiva​‐
lent: (i) aRb (ii) [a]
= [b] (iii) [a] ∩ [b]
=/= ∅. A relation
R on a set S is
called a partial
ordering or partial
order if it is
reflexive,
antisym- metric,
and transi​tive. A
set S together
with a partial
ordering R is
called a partially
ordered set, or
poset, and is
denoted by (S,
R). Members of S
are called
elements of the

poset. When
every two
elements in the
set are compar​‐
able, the relation
is called a total
ordering.

By j24
cheatography.com/j24/

Not published yet.
Last updated 19th December, 2023.
Page 3 of 100.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/j24/
https://apollopad.com

asdf Cheat Sheet
by j24 via cheatography.com/195607/cs/41793/

Boolean functions

The
complement
of an
element,
denoted
with a bar,
is defined
by bar0 = 1
and bar1 =
0. The
variable x is
called a
Boolean
variable if it
assumes
values only
from B, that
is, if its only
possible
values are 0
and 1. A
function
from B n to
B is called a
Boolean
function of
degree n. x
| y (or x
NAND y):
the
expression
that has the
value 0
when both x
and y have
the value 1
and the
value 1
otherwise. x
↓ y (or x
NOR y): the
expression
that has the
value 0
when either
x or y or
both have
the value 1
and the
value 0
other- wise

barbarx = x
Law of the
double
complement
x + x = x
Idempotent
laws x · x =
x x + 0 = x
Identity laws
x · 1 = x x +
1 = 1
Domination
laws x · 0 =
0 x + y = y +
x Commut​‐
ative laws
xy = yx x +
(y + z) = (x +
y) + z
Associ​ative
laws x(yz) =
(xy)z x + yz
= (x + y)(x +
z) Distri​‐
butive laws
x(y + z) = xy
+ xz bar(xy)
= barx +
bary De
Morgan’s
laws bar(x +
y) = barx
bary. x + xy
= x
Absorption
laws x(x +
y) = x x +
barx = 1
Unit
property
xbarx = 0
Zero
property

A literal is a
Boolean
variable or its
comple​ment.
A minterm of
the Boolean
variables x1,
x2, . . . , xn is
a Boolean
product y1y2
· · · yn, where
y i = xi or yi =
x i . Hence, a
minterm is a
product of n
literals, with
one literal for
each
variable. The
sum of
minterms that
represents
the function
is called the
sum-of​-pr​‐
oducts
expansion or
the disjun​‐
ctive normal
form of the
Boolean
function. Find
the sum-of​-
pr​oducts
expansion for
the function F
(x, y, z) = (x +
y)z. Solution:
We will find
the sum-of​-
pr​oducts
expansion of
F (x, y, z) in
two ways.
First, we will
use Boolean
identities to
expand the
product and
simplify. We
find that F (x,
y, z) = (x +

http://www.cheatography.com/
http://www.cheatography.com/j24/
http://www.cheatography.com/j24/cheat-sheets/asdf

y)z = xz + yz
Distri​butive
law = x1z +
1yz Identity
law = x(y +
y)z + (x +
x)yz Unit
property =
xyz + xy z +
xyz + xyz
Distri​butive
law = xyz +
xy z + xy z.
Idempotent
law. The
resulting
expansion is
called the
conjun​ctive
normal form
or produc​t-o​f-
sums
expansion of
the function.
These
expansions
can be found
from sum-of​-
pr​oducts
expansions
by taking
duals.
Because
every
Boolean
function can
be repres​‐
ented using
these
operators we
say that the
set {·, +,− } is
functi​onally
complete

By j24
cheatography.com/j24/

Not published yet.
Last updated 19th December, 2023.
Page 4 of 100.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/j24/
https://apollopad.com

	asdf Cheat Sheet - Page 1
	Old

	asdf Cheat Sheet - Page 2
	Turing Machine
	Number Theory

	asdf Cheat Sheet - Page 3
	FSM FSA NFA
	Relations

	asdf Cheat Sheet - Page 4
	Boolean functions

