asdf Cheat Sheet by j24 via cheatography.com/195607/cs/41793/

Old		
Countable.	Show that	All integers
A set that	the set of	between 10
is either	positive	and 10000:
finite or	even	Finite. All
has the	integers E	integers less
same	is	than 10:
cardinality	countable.	Countably
as the set	Let $f(x) =$	infinite. S =
of positive	2x, E =	$\{(x,y) \mid x, y \text{ in }$
integers	{1,2,3,4,},	N}: Countably
$(\mathbb{Z}!)$ is	f(x) =	inf. All real
called	{2,4,6,8,}.	numbers
countable.	Then f is a	between 0 and
To be	bijection	1: Uncoun-
countable,	from N to E	table. All
there must	since f is	rational
exist a 1-1	both one-to-	numbers
and onto	one and	between 0 and
(bijection)	onto. To	1: Countably
between	show that it	inf. All integers
the set	is one-to-	that are
and $\mathbb{N}!$ (i.e.	one,	multiples of 8:
Z!)	suppose	Countably inf.
	that f(n) =	
	f(m).	

Induction. To prove that P(n) is true for all positive integers n, we complete these steps: Basis Step: Show that P(1) is true. Inductive Step: Show that $P(k) \rightarrow P(k)$ + 1) is true for all positive integers k. То complete the inductive step, assuming the inductive hypothesis that P(k) holds for an arbitrary integer k, show that P(k + 1) must be true.

Old (cont)

Template for Proofs by Mathematical Induction 1. Express the statement that is to be proved in the form "for all $n \ge b$, P (n)" for a fixed integer b. 2. Write out the words "Basis Step." Then show that P (b) is true, taking care that the correct value of b is used. This completes the first part of the proof. 3. Write out the words "Inductive Step." 4. State, and clearly identify, the inductive hypothesis, in the form "assume that P (k) is true for an arbitrary fixed integer $k \ge b$." 5. State what needs to be proved under the assumption that the inductive hypothesis is true. That is, write out what P (k + 1) says. 6. Prove the statement P (k + 1) making use the assumption P (k). Be sure that your proof is valid for all integers k with $k \ge b$, taking care that the proof works for small values of k, including k = b. 7. Clearly identify the conclusion of the inductive step, such as by saying "this completes the inductive step." 8. After completing the basis step and the inductive step, state the conclusion, namely that by mathematical induction, P (n) is true for all integers n with $n \ge b$.

By **j24**

cheatography.com/j24/

Not published yet. Last updated 19th December, 2023. Page 1 of 100.

asdf Cheat Sheet by j24 via cheatography.com/195607/cs/41793/

r 🖬 1		r e	2	1	1	-1
	1.9	ι	-	. W.J.		

Strong
Induction:
To prove
that P(n) is
true for all
positive
integers n
where P(n)
is a
propos-
itional
function,
complete
two steps:
Basis Step:
Verify that
the propos-
ition P(1) is
true.
Inductive
Step: Show
the condit-
ional
statement
$IP(1) \wedge P(2)$
$\Lambda \bullet \bullet \bullet \Lambda P(k)$
$\rightarrow P(k+1)$
$\rightarrow \Gamma(K + I)$
Integers K.
Ordina-
ry/weak
induction •
Rule 1:
P(0) (or
any other
base case)
Rule 2:
P(n) ->
P(n+1)
Strong
induction •
Rule 1:
P(0) (or
any other
base case)
• Rule 2:
P(1), P(2),
P(3),P(n)
-> P(n+1)
The

Example:	Example:
Show that if	Prove that
n is an	every
integer	amount of
greater than	postage of
1, then n can	12 cents or
be written as	more can be
the product	formed using
of primes.	just 4-cent
Solution: Let	and 5-cent
P(n) be the	stamps.
proposition	Solution: Let
that n can be	P(n) be the
written as a	proposition
product of	that postage
primes.	of n cents
BASIS	can be
STEP: P(2)	formed using
is true since	4-cent and 5-
2 itself is	cent stamps.
prime.	BASIS
INDUCTIVE	STEP: P(12),
STEP: The	P(13), P(14),
inductive	and P(15)
hypothesis is	hold. P(12)
P(j) is true	uses three 4-
for all	cent stamps.
integers j	P(13) uses
with $2 \le j \le k$.	two 4-cent
To show that	stamps and
P(k + 1) must	one 5-cent
be true under	stamp.
this assump-	P(14) uses
tion, two	one 4-cent
cases need	stamp and
to be consid-	two 5-cent
ered: If k + 1	stamps.
is prime,	P(15) uses
then P(k + 1)	three 5-cent
is true.	stamps.
Otherwise, k	INDUCTIVE
+ 1 is	STEP: The
composite	inductive
and can be	hypothesis
written as the	states that
product of	P(j) holds for
two positive	12 ≤ j ≤ k,
integers a	where $k \ge$
and b with 2	15.
≤ a ≤ b < k +	Assuming
1. By the	the inductive
inductive	hypothesis, it

Turing Machine				
A Turing	1. At the	Let V be a		
machine T	beginning of	subset of an		
= (S, I, f, s	its operation a	alphabet I.		
0) consists	TM is	A TM T =		
of a finite	assumed to be	(S, I, f, s0)		
set S of	in the initial	recognizes		
states, an	state s0 and to	a string x in		
alphabet I	be positioned	V if and only		
that	over the	if T, starting		
includes	leftmost	in the initial		
the blank	nonblank	position		
symbol B,	symbol on the	when x is		
a partial	tape. This is	written on		
function f	the initial	the tape,		
from (S ×	position of the	halts in a		
l)→ (S × l	machine. 2. At	final state.		
×{R,L}) a	each step, the	T is said to		
starting	control unit	recognize a		
state s0.	reads the	subset A of		
For some	current tape	Vif it is the		
(state,	symbol x. 3. If	case that a		
symbol)	the control unit	string x is		
pairs the	is in state s	recognized		
partial	and if the	by T if and		
function f	partial function	only if x		
may be	f is defined for	belongs to		
undefined,	the pair (s, x)	A. Note that		
but for a	with $f(s, x) =$	to recognize		
pair for	(s', x', d), the	a subset A		
which it is	control unit:	of V* we		
defined,	enters the	can use		
there is a	state s',	symbols not		
unique	writes the	in V. This		
(state,	symbol x' in	means that		
symbol,	the current	the input		
direction)	cell, erasing x,	alphabet I		
triple	and moves	may include		
associated	right one cell if	symbols not		
to this pair.	d = R or	in V. We will		
The five-t-	moves left one	see that		
uples	cell if d = L. 4.	these extra		
corres-	This step is	symbols are		
ponding to	written as the	used as		
the partial	five-tuple (s, x,	markers. A		
function in	s′, x′, d).	ТМ		
the	Turing	operating on		
definition	machines are	a tape		
of a TM	defined by	containing		
are called	specifying a	the symbols		
the	set of such	of a string x		
transition	five-tuples. If	in consec-		
rules of	the partial	utive cells,		

Number Theory

	.,	
Let a = b	Base	GCD and LCM
mod (m) • a	Conver-	Greatest
is the	sions	Common
remainder	Convert	Divisor (GCD)
when b is	1011 0111	- is the largest
divided by	to decimal,	number that
m	octal, and	divides both a
Reflexive:	hexade-	and b Least
$a \equiv a$	cimals	Common
mod m	Decimal •	Multiple (LCM)
Symmetric:	2' * 1 + 2(*	- Is the
If $a \equiv \square$	(0 + 2) * 1 +	smallest
$\square \mod \square$	2 * 1 + 2! *	nositive
	n + 2# * 1 + 1	integer that is
$\Box = a$	(2'' * 1) +	divisible by a
$\square = u$	$(2^{(2)} + 1)$	and b To find
Transitivity:	(2 /0 " 1) =	
If $a = \Box$	102 -	Obviously
$\prod a = \Box$	100 - 000	Obviously,
	022+1 • 22	LCIVI(a,b) IS no
	= 82+6 • 0	more than ab
$\equiv c \mod c$	= 80+2 •	Start by finding
<i>m</i> , then	267. From	the prime
$a \equiv c$	Decimais	tactors of a
mod m	to Binary,	and b Build
Additive	Octal and	LCM using the
Inverse For	Hexade-	largest power
any <i>a</i> ,	cimals	of each prime
there exists	Convert	that is in a or
a b such	24680 to	b. Least
that a +	Binary,	Common
<i>b</i> = 0	Octal and	Multiple Find
(mod m)	Hexade-	lcm(40,12) •
In this	cimals To	40 = 2! 5" • 12
case, the b	convert to	= 2# 3" For
is called	binary,	each prime
the additive	divide by 2	base, use the
inverse of a	repeatedly	largest
and vice	and record	exponent
versa	the	between the
Multiplic-	remainder	two numbers •
ative	at each	2! 3" 5" = 120
inverse.	stage.	lcm(40,12)=12
For any 🗆	24680 =	0 Find lcm(52-
□ relatively	2 <i>12340 + 0</i>	92,810) • 5292
prime to \Box	12340 =	= 2# 3! 7# •
□ where	<i>2</i> 6170 + 0	810 = 2" 3 $5'' \cdot$
gcd a,	6170 =	<i>2#3</i> 5"7#=
m = 1,	2 <i>3085 + 0</i>	79380 lcm(52-
there exists	3085 =	92,810)=7-
a b such	<i>2</i> 1542 + 1	9380. GCD as
that ab =	1542 =	a linear
1 (<i>mod</i> □	2771 + 0	combination If

rule. 1. If	hypothesis a	can be
P(n+1) can	and b can be	shown that
be proven	written as the	P(k + 1)
from P(n)	product of	holds. Using
only, then	primes and	the inductive
weak/o-	therefore k +	hypothesis,
rdinary	1 can also be	P(k - 3)
induction is	written as the	holds since k
sufficient 2.	product of	- 3 ≥ 12. To
lf P(n+1)	those	form postage
requires	primes.	of k + 1
other	Hence, it has	cents, add a
propos-	been shown	4-cent stamp
itions prior	that every	to the
to P(n)	integer	postage for k
(e.g. P(n-1)	greater than	- 3 cents.
or P(n-2))	1 can be	Hence, P(n)
then strong	written as the	holds for all n
induction	product of	≥ 12.
may be	primes.	
appropriate		

the

machine.

function f is	does not
undefined for	recognize x
the pair (s, x)	if it does not
then T will	halt or halts
halt. 5. The	in a state
Turing	that is not
Machine	final.
outputs the	
revised tape.	

□) In this *771 = 2*385 a and b are case, the b + 1 385 = positive is called 2*192 + 1* integers, the *192 = 2*96 the multipgcd(a, b) can + 0 96 = be written as licative gcd(a, b) = am inverse of a 248 + 0 48 *= 2*24 + 0 and vice + bn for some 24 = 2*12 +* integers m and versa. a $\equiv b \square$ *0 12 = 2*6 + n. Note. Multiples of $\Box od m$ 06 = 23 +*03 = 2*1 + GCD are is equivalent 1 1 = 20 + Linear to *a* – 🗆 1 110000-Combinations $\Box = kn$ 001101of a and b E.g. for some \square 000_2. write gcd(312, $\Box \in \mathbb{Z}$ If \Box From 125) as a $\Box \equiv b$ Decimals linear combinto Binary, ation 312 m + (mod n)and $c \equiv \Box$ Octal and 125 n Solution. \Box (mod \Box gcd(312, 125) Hexade- \Box), then \Box cimals = gcd(312, 62) $\Box c \equiv bd$ Convert è 312 = 2*125 +* 24680 to (mod n)62 ---(1) Example. 5 Binary, gcd(312, 62) = GCD(62, 1) è ~ 3 (mod 2) Octal and *125 = 2*62 + 1 -Congruent Hexade-Class. The cimals --(2) gcd(62,1) 24680 = congruent = 1 Using (2). class of an *8*3085 + 0 1 = 125 + (-3085 = 2)62 = 125 + (integer a, 2) (312- 2125) denoted [a] 8*385 + 5* is defined *385 = 8*48 using (1) = as [a] = { b + 1 48 = 86 *5*125 + (in Z | a is +06= 2)*312. congruent *8*0+6 to b} 60150 8 24680 = 16*1542+8* 1542 = *16*96+6 96=16*6+0 6=16*0+6 6068_16

By **j24** cheatography.com/j24/ Not published yet. Last updated 19th December, 2023. Page 2 of 100.

asdf Cheat Sheet by j24 via cheatography.com/195607/cs/41793/

FSM FSA NFA

A finitestate machine M =(S, I, O, f, g, s 0) consists of a finite set S of states a finite input alphabet I a finite output alphabet Оa transition function f that assigns to each state and input pair a new state an output function g that assigns to each state and input pair an output an initial state s 0 . A state table is used to represent the values of the transition function f and the output function g for all (state, input)

FSMs with no A nondetoutput, but with erministic some states finite-state automaton M designated as accepting = (S, I, f, s 0, F) consists of states, are specifically A finite set S designed for of states A recognizing finite input languages. A alphabet I A transition finite-state automaton M = function f that (S, I, f, s0, F) assigns a set consists of a of states to finite set S of every pair of states, a finite state and input alphabet input (so that I, a transition f: S × I → function f that P(S)) An assigns a next initial or start state to every state s0 A pair of state subset F of S and input (so consisting of that f: S × I \rightarrow final (or S), an initial or accepting) start state s 0, states. For and a subset F every NFA of S consisting there is an of final (or equivalent DFA. That is, accepting) states. FSAs if the can be represlanguage L is ented using recognized either state by a NFA M tables or state 0, then L is diagrams, in also which final recognized states are by a DFA M indicated with a 1. We double circle. construct the A finite state DFA M 1 so machine (FSM) that The with no output start symbol is called a finite of M 1 is {s state automata 0}. The input (FSA). A string set of M 1 is x is said to be the same as recognized (or the input set accepted) by of M 0. Each the machine M state in M 1

= (S, I, f, s 0, F)

if it takes the

is made from

of a set of

FSM FSA NFA (cont)

A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word (or sentence) over V is a string of finite length of elements of V . The empty string or null string, denoted by λ , is the string containing no symbols. The set of all words over V is denoted by V *. A language over V is a subset of V *. A phrase-structure grammar G = (V, T)S, P) consists of a vocabulary V, a subset T of V consisting of terminal symbols, a start symbol S from V , and a finite set of productions P . The set V - T is denoted by N. Elements of N are called nonterminal symbols. Every production in P must contain at least one nonterminal on its left side. Let G = (V, T, S,P) be a phrase-structure grammar. The language generated by G (or the language of G), denoted by L(G), is the set of all strings of terminals that are derivable from the starting state S. In other words, L(G) = {w $\in T * | S * * \Rightarrow w$ EXAMPLE 5 Give a phrase-structure grammar that generates the set $\{0n1n \mid n = 0, 1, 2, \ldots\}$ }. The solution is the grammar G = (V, T)

A type 0 grammar has no restrictions on its productions. A type 1 grammar can have productions of the form w1 \rightarrow w2 , where w1 = |Ar| and w2 =lwr, where A is a nonterminal symbol, I and r are strings of zero or more terminal or nonterminal symbols, and w is a nonempty string of terminal or nonterminal symbols. It can also have the production $S \rightarrow \lambda$ as long as S does not appear on the right-hand side of any other production. A type 2 grammar can have productions only of the form w1 \rightarrow w2 , where w1 is a single symbol that is not a terminal symbol. A type 3 grammar can have productions only of the form w1 \rightarrow w2 with w1 = A and either w2 = aB or w2 = a,where A and B are nonterminal symbols and a is a terminal symbol, or with w1 = S and w2 = λ. EXAMPLE 9 It follows from Example 5 that $\{0n1n \mid n = 0, 1, 2,$...} is a context-

Relations

A binary 1) A relation R relation R on a A on a set A and B is is called defined reflexive if as R is a $(a, a) \in R$ subset of for every A x B. A element a relation is ∈ A. 2) A a subset relation R of the on a set A cartesian is called product symmetric of two if (b, a) ∈ sets A R and B, whenever which is a $(a, b) \in R$, set of for all a, b ordered ∈ A. A pairs. A x relation R $B = \{(a, 1),$ on a set A such that (a,2), (a,3), for all a, b \in A, if (a, (b,1), b) ∈ R (b,2), (b,3), and (b, a) ∈ R, then (c,1), (c,2), a = b is called (c,3), (d,1), antisy-(d,2), mmetric. (d,3)}. A 3) A relation is relation R usually on a set A written in is called set transitive format: R if = {(a,2), whenever (b,1), $(a, b) \in R$ (c,1), and (b, c) (d,3), \in R, then (a, c) ∈ R, (c,2)}. We say for all a, that a is b, $c \in A$. 4) Let R related to 2 in one be a of the relation following from a set notations: A to a set (a,2) is e B and S a R, or a R relation from B to 2.

Because this relation contains R, is reflexive, and is contained within every reflexive relation that contains R, it is called the reflexive closure of R. This new relation is symmetric and contains R. Furthermore, any symmetric relation that contains R must contain this new relation, because a symmetric relation that contains R must contain (2, 1) and (1, 3). Consequently, this new relation is called the symmetric closure of R. Let R be a relation on a set A. The connectivity relation R* consists of the pairs (a, b) such that there is a path of length at least one from a to b in R. The transitive closure of a relation R equals the connectivity relation R*. A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive. Two elements a and b that are related

Alternatively, a finitestate machine can be represented by a state diagram, which is а directed graph with labeled edges. Each state is represented by a circle, and arrows labeled with the input and output pair represent the transitions. The state table and state diagram both represent the finite state machine with S = {s 0,s 1 ,s 2 ,s 3 $, I = \{0,$ 1}, and O = {0, 1}.

initial state s 0 to a final state, that is, f(s 0, x). The language recognized (or accepted) by M, denoted by L(M), is the set of all strings that are recognized by M. Two finitestate automata are called equivalent if they recognize the same language. The final state of M 3 are s 0 and s 3. The strings that take s 0 to itself are λ , 0, 00,000,.... The strings that take s 0 to s 3 are a string of zero or more consecutive 0s, followed by 10, followed by any string. Hence, L(M 3) = {0n 0n 10x | n = 0,1, 2,, and x is any string}

states in M 0. Construct new states in M 1 by interpreting each unique output in the M 0 transition table as a its singular own

state, e.g. s !

Given a state

{s\$!, s\$"

,..., s\$ # }

in M 1 and

symbol x, the

transitions

state to the

next is the

transitions

f(s\$!, x), f(s\$

",x), ..., f(s\$

,x) from M

0 for the

states that

compose the

state from \Box

□" The final

states of M 1

are any sets

that contain a

final state of

M 0.

union of

from this

an input

, s" , 🗆

 \Box #,Ø

S, P), where V = {0, 1, S}, T = {0, 1}, S is the starting symbol, and the productions are S \rightarrow 0S1 S $\rightarrow \lambda$. free language, because the productions in this grammar are $S \rightarrow 0S1$ and $S \rightarrow 0S1$

λ.

a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in$ C. and for which there exists an element b ∈ B such that (a, b) $\in R$ and $(b, c) \in S.$ We denote the composite of R and S by S • R. 5) Let R be a relation on the set A. The powers R n , n = 1, 2, 3, . . . , are defined recursively by R1 = R and R n+1 = R n • R. 6) The relation R on a set A is transitive if and only if R n ⊆ R for n = 1, 2, 3, ...

by an equivalence relation are called equivalent. The notation a ~ b is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation. Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. The equivalence class of a with respect to R is denoted by [a]R . When only one relation is under consideration, we can delete the subscript R and write [a] for this equivalence class. Let R be an equivalence relation on a set A. These statements for elements a and b of A are equivalent: (i) aRb (ii) [a] = [b] (iii) [a] ∩ [b] =/= Ø. A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisym- metric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the

poset. When every two elements in the set are comparable, the relation is called a total ordering.

By j24 cheatography.com/j24/ Not published yet. Last updated 19th December, 2023. Page 3 of 100.

asdf Cheat Sheet by j24 via cheatography.com/195607/cs/41793/

Boolean functions

The	barbarx = x	A literal is a
complement	Law of the	Boolean
ofan	double	variable or its
element,	complement	complement.
denoted	x + x = x	A minterm of
with a bar,	Idempotent	the Boolean
s defined	laws x · x =	variables x1,
by bar0 = 1	x x + 0 = x	x2, , xn is
and bar1 =	Identity laws	a Boolean
0. The	$x \cdot 1 = x x +$	product y1y2
variable x is	1 = 1	· · · yn, where
called a	Domination	y i = xi or yi =
Boolean	laws x · 0 =	xi. Hence, a
variable if it	0 x + y = y +	minterm is a
assumes	x Commut-	product of n
values only	ative laws	literals. with
from B. that	xy = yx x +	one literal for
s. if its only	(y + z) = (x + z)	each
oossible	(y) = y (x) (y) + z	variable. The
values are 0	Associative	sum of
and 1. A	laws $x(yz) =$	minterms that
function	(xy)z + yz	represents
from B n to	(xy) = (x + y)(x + y)	the function
B is called a	z) Distri-	is called the
Boolean	butive laws	sum-of-pr-
	x(y + z) = xy	oducts
dearee n x	+ xz har(xy)	expansion or
	= barx +	the disjun-
	bary De	ctive normal
the	Morgan's	form of the
evoression	laws $har(x +$	Boolean
that has the	y = bary	function Find
	y = barx	the sum-of-
when both x		products
and v have	Absorption	evpansion for
		the function E
and the	aws x(x + y) = x + y	(x, y, z) = (x + z)
	$y) = x x^{+}$	(x, y, z) = (x + y)z
othonwise x	Linit	y)z. Solution.
	proporty	the curp of
y (UIX	property	the sum-or-
NOR y). the		products
	Zero	
inal nas the	property	F (X, Y, Z) IN
		two ways.
when either		First, we will
x or y or		use Boolean
both have		identities to
ine value 1		expand the
and the		product and
value 0		simplify. We
other- wise		tind that F (x,
		y, z) = (x +

y)z = xz + yz Distributive law = x1z +1yz Identity law = x(y +y)z + (x + x)yz Unit property = xyz + xy z + xyz + xyz Distributive law = xyz + xy z + xy z. Idempotent law. The resulting expansion is called the conjunctive normal form or product-ofsums expansion of the function. These expansions can be found from sum-ofproducts expansions by taking duals. Because every Boolean function can be represented using these operators we say that the set $\{\cdot, +, -\}$ is functionally complete

By **j24**

cheatography.com/j24/

Not published yet. Last updated 19th December, 2023. Page 4 of 100.