\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{j24} \pdfinfo{ /Title (a.pdf) /Creator (Cheatography) /Author (j24) /Subject (A Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{A Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{j24} via \textcolor{DarkBackground}{\uline{cheatography.com/195607/cs/41005/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}j24 \\ \uline{cheatography.com/j24} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 26th October, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{x{1.61351 cm} x{1.81949 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Propositions}} \tn % Row 0 \SetRowColor{LightBackground} Different Ways of Expressing p → q & q unless ¬p, q if p, q whenever p, q follows from p, p only if q, q when p, p is sufficient for q, q is necessary for p. \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} Proposition & True/False, with no variables. Ex) The sky is blue = Prop. n+1 is even Not prop bc n is unknown. \tn % Row Count 11 (+ 5) % Row 2 \SetRowColor{LightBackground} Tautology & a proposition which is always true. Ex) p ∨¬ p \tn % Row Count 14 (+ 3) % Row 3 \SetRowColor{white} contradiction & a proposition which is always false. Ex) p ∧¬ p \tn % Row Count 17 (+ 3) % Row 4 \SetRowColor{LightBackground} contingency & a proposition which is neither a tautology nor a contradiction, such as p \tn % Row Count 21 (+ 4) % Row 5 \SetRowColor{white} satisfiable & at least one truth table is true. \tn % Row Count 23 (+ 2) % Row 6 \SetRowColor{LightBackground} p -\textgreater{} q & Only false when p = T q = F. everthing else true. \tn % Row Count 26 (+ 3) % Row 7 \SetRowColor{white} converse & q -\textgreater{} p \tn % Row Count 27 (+ 1) % Row 8 \SetRowColor{LightBackground} inverse & -p -\textgreater{} -q \tn % Row Count 28 (+ 1) % Row 9 \SetRowColor{white} contrapositive & -q -\textgreater{} -p \tn % Row Count 29 (+ 1) % Row 10 \SetRowColor{LightBackground} p \textless{}-\textgreater{} q & if and only if. true if and only if p and q have the same truth value ex) p = t q = t or p = f q = f \tn % Row Count 34 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.61351 cm} x{1.81949 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Propositions (cont)}} \tn % Row 11 \SetRowColor{LightBackground} Logically equivalent & p≡q. all truth values have to be the equal aka same results. \tn % Row Count 3 (+ 3) % Row 12 \SetRowColor{white} Negate Quantifiers & ¬∀xP (x) ≡ ∃x ¬P (x). ¬∃xQ(x) ≡ ∀x ¬Q(x) \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Functions}} \tn % Row 0 \SetRowColor{LightBackground} function from A to B. f: A -\textgreater{} B & an assignment of exactly one element of B to each element of A \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} domain of f & the set A, where f is a function from A to B. ans is A \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} codomain of f & the set B, where f is a function from A to B. ans is B \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} b is the image of a under f & b = f (a). "what does this map to" \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} a is a pre-image of b under f & f (a) = b. "what values map to this". \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} range & values of codomain that were mapped to by domain. \tn % Row Count 17 (+ 3) % Row 6 \SetRowColor{LightBackground} Injective Function (one to one) & a function f is one-to-one if and only if f (a) =/= f (b) whenever a =/= b. each value in the range is mapped to exactly one element of domain. (each range value is mapped once). ∀a∀b(f (a) = f (b) → a = b) or equivalently ∀a∀b(a =/= b → f (a) =/= f (b)) \tn % Row Count 31 (+ 14) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Functions (cont)}} \tn % Row 7 \SetRowColor{LightBackground} Surjective function (onto) & every element in codomain maps to at least one element in domain. (each element in codomain is mapped). if and only if for every element b ∈ B there is an element a ∈ A with f (a) = b \tn % Row Count 10 (+ 10) % Row 8 \SetRowColor{white} To show that f is injective & f(x1)=f(x2) =\textgreater{} x1=x2. x1=/=x2 =\textgreater{} f(x1)=/=f(x2). ex) f(a) = f(b) =\textgreater{} a=b. ex) f(x) = x+3. f(a) = 7, a+3=7, a=4. f(b)=7. b=4. f(a)=f(b) a=b, 1to1 \tn % Row Count 18 (+ 8) % Row 9 \SetRowColor{LightBackground} To show that f is not injective & Find particular elements x, y ∈ A such that x /= y and f (x) = f (y) \tn % Row Count 22 (+ 4) % Row 10 \SetRowColor{white} To show that f is surjective & solve in terms of x. pick 2 random ys, if x eqns comes back in domain, surjective. domain matters, Z, R, N has to map x and y in same. ex) f(x)=x+3. f(4)=7, f(5)=8. always mapped, onto. \tn % Row Count 32 (+ 10) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Functions (cont)}} \tn % Row 11 \SetRowColor{LightBackground} To show that f is not surjective & Find a particular y ∈ B such that f (x)  = y for all x ∈ A \tn % Row Count 4 (+ 4) % Row 12 \SetRowColor{white} Bijective function & all range is mapped to and mapped to once (injective and surjective) \tn % Row Count 8 (+ 4) % Row 13 \SetRowColor{LightBackground} Inverse & has to be bijective. f\textasciicircum{}-1(y) = x if and only if f(x) = y. because this is both 1to1 and onto, its a bijection, therefore invertible. \tn % Row Count 15 (+ 7) % Row 14 \SetRowColor{white} composition of fns & f(g(a)) or f o g(a) \tn % Row Count 16 (+ 1) % Row 15 \SetRowColor{LightBackground} floor/ceiling & bracketwithlow only/highonly. round down/up to nearest integer. ex) -2.2 floor = -3. 5.5 ceil = 6. \tn % Row Count 21 (+ 5) % Row 16 \SetRowColor{white} properties & x floor = n if and only if n ≤ x \textless{} n + 1. x ciel = n if and only if n − 1 \textless{} x ≤ n. x floor = n if and only if x − 1 \textless{} n ≤ x. x ciel = n if and only if x ≤ n \textless{} x + 1. x − 1 \textless{} floorx ≤ x ≤ cielx \textless{} x + 1. floorx = −cielx. cielx = -floorx. ciel(x + n) = cielx + n. opp of last floor \tn % Row Count 36 (+ 15) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Functions (cont)}} \tn % Row 17 \SetRowColor{LightBackground} ex) let f(x) = floor((x\textasciicircum{}2)/2). find f(S) if S=\{0,1,2,3\} & f(0) = 0, f(1) = 0. f(2) = 2, f(3) = 4 \tn % Row Count 3 (+ 3) % Row 18 \SetRowColor{white} equal functions & Two functions are equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain \tn % Row Count 11 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.51052 cm} x{1.92248 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Proofs}} \tn % Row 0 \SetRowColor{LightBackground} Direct Proof & assume p is true, prove q. p =\textgreater{} q. Always start with this then try contraposition. \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} Proof by contraposition & assume \textasciitilde{}q is true, prove \textasciitilde{}p. (\textasciitilde{}q =\textgreater{} \textasciitilde{}p) equals (p =\textgreater{} q) \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} Vacuous proof & if we can show that p is false, then we have a proof, called a vacuous proof, of the conditional statement p → q \tn % Row Count 13 (+ 6) % Row 3 \SetRowColor{white} Proof by contradiction & Assume \textasciitilde{}p is true, find contradiction, therefore \textasciitilde{}p is true. prove that p is true if we can show that ¬p → (r ∧ ¬r) is true for some proposition r \tn % Row Count 20 (+ 7) % Row 4 \SetRowColor{LightBackground} Counterexample & to show that a statement of the form ∀xP (x) is false, we need only find a counterexample. \tn % Row Count 25 (+ 5) % Row 5 \SetRowColor{white} Proof by exhuastion & ex: Prove that (n + 1)3 ≥ 3n if n is a positive integer with n ≤ 4. Prove by doing n = 1,2,3,4 \tn % Row Count 30 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.51052 cm} x{1.92248 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Proofs (cont)}} \tn % Row 6 \SetRowColor{LightBackground} Proof by cases & ex: Prove that if n is an integer, then n2 ≥ n. Case (i): When n = 0. Case (ii): When n ≥ 1. Case (iii): In this case n ≤ −1 \tn % Row Count 6 (+ 6) % Row 7 \SetRowColor{white} Constructive Existence Proof & ∃xP(x). To find if P(x) exists, show an example P(c) = True \tn % Row Count 9 (+ 3) % Row 8 \SetRowColor{LightBackground} Nonconstructive Existence Proof & Assume no values makes P(x) true. Then contradict. \tn % Row Count 12 (+ 3) % Row 9 \SetRowColor{white} UNIQUENESS proof & When asked for unique, prove exists, then unique. ex: x exists, x=/=y , so y doesnt have that property, therefore x is unique. \tn % Row Count 18 (+ 6) % Row 10 \SetRowColor{LightBackground} without loss of generality & an assumption in a proof that makes it possible to prove a theorem by reducing the number of cases to consider in the proof \tn % Row Count 24 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.61351 cm} x{1.81949 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Sets}} \tn % Row 0 \SetRowColor{LightBackground} Element of set & a ∈ A, a ∈/ A \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} roster method & V = \{a, e, i, o, u\}, O = \{1, 3, 5, 7, 9\}. \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} set builder notation & ex: the set O of all odd positive integers less than 10 can be written as: O = \{x ∈ Z+ | x is odd and x \textless{} 10\}. ex) A = \{𝑥|𝑥 ≥ −1 ∧ 𝑥 \textless{} 1\}. ex) \{x | P(x)| \tn % Row Count 12 (+ 9) % Row 3 \SetRowColor{white} Interval Notation & {[}-2,8) \tn % Row Count 13 (+ 1) % Row 4 \SetRowColor{LightBackground} Natural numbers N & N = \{0, 1, 2, 3, . . .\} \tn % Row Count 15 (+ 2) % Row 5 \SetRowColor{white} Integers Z & Z = \{. . . , −2, −1, 0, 1, 2, . . .\} \tn % Row Count 17 (+ 2) % Row 6 \SetRowColor{LightBackground} Positive Integers Z+ & Z+ = \{1, 2, 3, . . .\} \tn % Row Count 19 (+ 2) % Row 7 \SetRowColor{white} Rational Numbers Q & Q = \{p/q | p ∈ Z, q ∈ Z, and q =/= 0\} \tn % Row Count 21 (+ 2) % Row 8 \SetRowColor{LightBackground} Real Numbers R & All previous sets (N, Z, Q) \tn % Row Count 23 (+ 2) % Row 9 \SetRowColor{white} R+ & positive real numbers \tn % Row Count 24 (+ 1) % Row 10 \SetRowColor{LightBackground} Complex numbers C & \{a+bi, ...\} \tn % Row Count 25 (+ 1) % Row 11 \SetRowColor{white} Equal Sets & Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if ∀x(x ∈ A ↔ x ∈ B). We write A = B if A and B are equal sets. Dont matter if its \{1,3,3,3,2,2,3,\}, still \{1,3,2\}. Also dont matter order. \tn % Row Count 39 (+ 14) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.61351 cm} x{1.81949 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Sets (cont)}} \tn % Row 12 \SetRowColor{LightBackground} Null/ Empty Set & ∅, nothing. \{\}. \tn % Row Count 1 (+ 1) % Row 13 \SetRowColor{white} \{∅\} & 1 element \tn % Row Count 2 (+ 1) % Row 14 \SetRowColor{LightBackground} Singleton set & One element. \tn % Row Count 3 (+ 1) % Row 15 \SetRowColor{white} Universal Set U & Universe in context of statement. Example vowels in alphabet: U = \{z,y,x,w, ...\}, A = \{a,e,i,o,u\} A is a subset of U. \tn % Row Count 9 (+ 6) % Row 16 \SetRowColor{LightBackground} Subset & ∀x(x ∈ A → x ∈ B). Ex) the set A is a subset of B if and only if every element of A is also an element of B. We use the notation A ⊆ B to indicate that A is a subset of the set B. Ex) A = \{1,2,3\}, B = \{1,2,3,4\}, A ⊆ B. \tn % Row Count 20 (+ 11) % Row 17 \SetRowColor{white} Showing that A is a Subset of B & To show that A ⊆ B, show that if x belongs to A then x also belongs to B. \tn % Row Count 24 (+ 4) % Row 18 \SetRowColor{LightBackground} Showing that A is Not a Subset of B & To show that A ⊆/ B, find a single x ∈ A such that x ∈/ B. \tn % Row Count 28 (+ 4) % Row 19 \SetRowColor{white} Showing Two Sets are Equal & To see if A = B, Show A ⊆ B and B ⊆ A \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.61351 cm} x{1.81949 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Sets (cont)}} \tn % Row 20 \SetRowColor{LightBackground} proper subset & ∀x(x ∈ A → x ∈ B) ∧ ∃x(x ∈ B ∧ x  ∈ A)A ⊆ B but A =/= B. B contains an element not in A. Ex) A = \{1,2,3\}, B= \{1,2,3,4\}. 4 makes it proper subset. \tn % Row Count 8 (+ 8) % Row 21 \SetRowColor{white} Cardinality & |A| Distinct elements of set. A = \{1,2,3,3,4,4\} |A| = 4 \tn % Row Count 11 (+ 3) % Row 22 \SetRowColor{LightBackground} Power Set & the power set of S is the set of all subsets of the set S. The power set of S is denoted by P(S). Ex) A = \{1,2,3\}. P(A) = \{∅, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}. Ex) P(\{∅\}) = \{∅, \{∅\}\} \tn % Row Count 21 (+ 10) % Row 23 \SetRowColor{white} Cardinality of Power Set & 2\textasciicircum{}n, n is elements. \tn % Row Count 23 (+ 2) % Row 24 \SetRowColor{LightBackground} Tuple & (a1,a2,a3, ..., an) Ordered. Ex) (5,2) =/= (2,5) \tn % Row Count 26 (+ 3) % Row 25 \SetRowColor{white} Cartesian Product & \{(a, b) | a ∈ A ∧ b ∈ B\}. The Cartesian product of A and B, denoted by A × B, is the set of all ordered pairs (a, b), where a ∈ A and b ∈ B. Ex) A = \{0,1\} B = \{2,3,4\}, A x B = \{(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)\} \tn % Row Count 37 (+ 11) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.61351 cm} x{1.81949 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Sets (cont)}} \tn % Row 26 \SetRowColor{LightBackground} Truth Set & P(x): abs(x) = 3. Truth Set of P(x) = \{3,-3\} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Set Operations}} \tn % Row 0 \SetRowColor{LightBackground} Union & A ∪ B = \{x | x ∈ A ∨ x ∈ B\}. Ex) A = \{1,4,7\} B = \{4,5,6\}. A ∪ B = \{1,4,5,6,7\} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} Intersection & A ∩ B = \{x | x ∈ A ∧ x ∈ B\}. Ex) A = \{1,4,7\} B = \{4,5,6\}. A ∩ B = \{4\}. \tn % Row Count 9 (+ 4) % Row 2 \SetRowColor{LightBackground} disjoint & If A ∩ B = nothing, A and B are disjoint. \tn % Row Count 12 (+ 3) % Row 3 \SetRowColor{white} principle of \seqsplit{inclusion–exclusion} |A ∪ B| = |A| + |B| − |A ∩ B| & ex) A = \{1,2,3,4,5\}, B =\{4,5,6,7,8\}. \}A u B| = |A| + |B| -|A n B\} = 5 + 5 - 2 = 8 \tn % Row Count 17 (+ 5) % Row 4 \SetRowColor{LightBackground} A − B, difference of A and B & A - B = A ∩ B. \{x | x ∈ A ∧ x /∈ B\} Elements in A that are not in B. Ex) \{1, 3, 5\} − \{1, 2, 3\} = \{5\}. This is different from the difference of \{1, 2, 3\} and \{1, 3, 5\}, which is the set \{2\}. \tn % Row Count 27 (+ 10) % Row 5 \SetRowColor{white} Complement of A, A\textasciicircum{}c & \{x ∈ U | x /∈ A\} Everything in the universe context thats not in A. Ex) U = \{1,2,3,4\}. A = \{2\} B = \{3\}. A\textasciicircum{}c = \{1,3,4\} \tn % Row Count 34 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Set Operations (cont)}} \tn % Row 6 \SetRowColor{LightBackground} U = ℝ A = \{𝑥|𝑥 ≥ −1 ∧ 𝑥 \textless{} 1\}, B =\{𝑥|𝑥 \textless{} 0 ∨ 𝑥 ≥ 2\} & 𝐴 ∪ 𝐵 = \{𝑥|𝑥 \textless{} 1 ∨ 𝑥 ≥ 2\}. 𝐴 ∩ 𝐵 = \{𝑥|𝑥 \textless{} 0 ∧ 𝑥 ≥ −1\}. 𝐴\textasciicircum{}c = \{𝑥|𝑥 \textless{} −1 ∨ 𝑥 ≥ 1\}. \tn % Row Count 8 (+ 8) % Row 7 \SetRowColor{white} Identity, , , , , , , absorbtion, & A ∩ U = A. A ∪ ∅ = A. \tn % Row Count 10 (+ 2) % Row 8 \SetRowColor{LightBackground} domination & A ∪ U = U. A ∩ ∅ = ∅ \tn % Row Count 12 (+ 2) % Row 9 \SetRowColor{white} idempotent & A ∪ A = A. A ∩ A = A \tn % Row Count 14 (+ 2) % Row 10 \SetRowColor{LightBackground} complementation & (A\textasciicircum{}c)\textasciicircum{}c = A \tn % Row Count 15 (+ 1) % Row 11 \SetRowColor{white} commutative & A ∪ B = B ∪ A. A ∩ B = B ∩ A \tn % Row Count 17 (+ 2) % Row 12 \SetRowColor{LightBackground} associative & A ∪ (B ∪ C) = (A ∪ B) ∪ C. A ∩ (B ∩ C) = (A ∩ B) ∩ C \tn % Row Count 21 (+ 4) % Row 13 \SetRowColor{white} distributive & A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) \tn % Row Count 26 (+ 5) % Row 14 \SetRowColor{LightBackground} de morgans & (A n b)\textasciicircum{}c = A\textasciicircum{}c u B\textasciicircum{}c. (A U B)\textasciicircum{}c = A\textasciicircum{}c n B\textasciicircum{}c \tn % Row Count 29 (+ 3) % Row 15 \SetRowColor{white} absorption & A ∪ (A ∩ B) = A. A ∩ (A ∪ B) = A. \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Set Operations (cont)}} \tn % Row 16 \SetRowColor{LightBackground} complement & A ∪ A\textasciicircum{}c = U. A ∩ A\textasciicircum{}c = ∅. \tn % Row Count 2 (+ 2) % Row 17 \SetRowColor{white} countable & a set that either is finite or can be placed in one-to-one correspondence with the set of positive integers. To be countable, there must exist a 1-1 and onto (bijection) between the set and ℕ! (i.e. ℤ+) \tn % Row Count 13 (+ 11) % Row 18 \SetRowColor{LightBackground} Ex) Show that the set of positive even integers E is countable set. & Let f(x) = 2x. Then f is a bijection from N to E since f is both one-to-one and onto. To show that it is one-to-one, suppose that f( n) = f( m). Then 2 n = 2 m, and so n = m. To see that it is onto, suppose that t is an even positive integer. Then t = 2k for some positive integer k and f(k) = t \tn % Row Count 28 (+ 15) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}