Propositions

$\begin{array}{ll}\text { Different } & q \text { unless } \neg p, q \text { if } p, \\ \text { Ways of } & q \text { whenever } p, q\end{array}$
Expressing follows from p, p $p \rightarrow q \quad$ only if q, q when p, p is sufficient for q, q is necessary for p.

	p.	equivalent	values have to be
Proposition	True/False, with no variables. Ex)		the equal aka same results.
	The sky is blue $=$	Negate	$\neg \forall x P(x) \equiv \exists \mathrm{f} \neg \mathrm{P}$
	Prop. $\mathrm{n}+1$ is even	Quanti-	(x). $\neg \exists x Q(x) \equiv \forall x$
	Not prop be n is	fiers	$\neg \mathrm{Q}(\mathrm{x})$

Tautology a proposition which is always true. Ex) $p \vee \neg p$

contra- a proposition

diction which is always

 false. Ex) $p \wedge\urcorner p$| contin- | a proposition |
| :--- | :--- |
| gency | which is neither a | tautology nor a contradiction, such as p

satisfiable at least one truth table is true.
$p->q \quad$ Only false when p
$=T q=F$.
everthing else
true.

	true.
converse	$q->p$

inverse - $p->-q$
contrapos- -q -> -p
itive

Propositions (cont)	
$\mathrm{p} \mathrm{<->} \mathrm{q}$	if and only if. true if and only if p and q have the same truth value ex$) \mathrm{p}=\mathrm{t}$ $\mathrm{q}=\mathrm{t}$ or $\mathrm{p}=\mathrm{f} \mathrm{q}=\mathrm{f}$
	$\mathrm{p} \equiv \mathrm{q}$. all truth Logically
equivalent	values have to be the equal aka same results.
Negate	$\neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}$
Quanti-	$(\mathrm{x}) . \neg \exists \mathrm{xQ}(\mathrm{x}) \equiv \forall \mathrm{x}$
fiers	$\neg \mathrm{Q}(\mathrm{x})$

Functions	
function from A to B. f: A -> B	an assignment of exactly one element of B to each element of A
domain of f	the set A, where f is a function from A to B. ans is A
codomain of f	the set B, where f is a function from A to B. ans is B
b is the image of a under f	$b=f(a)$. "what does this map to"
a is a preimage of b under f	$\mathrm{f}(\mathrm{a})=\mathrm{b}$. "what values map to this".
range	values of codomain that were mapped to by domain.

Functions (cont)

Injective	a function f is one-
Function	to-one if and only if
(one to	$\mathrm{f}(\mathrm{a})=/=\mathrm{f}(\mathrm{b})$
one)	whenever $\mathrm{a}=/=\mathrm{b}$.
	each value in the

Surjective
function
(onto)
every element in
codomain maps to
at least one element in domain.
(each element in codomain is mapped). if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$

Functions (cont)	
To show that f is injective	$\begin{aligned} & f(x 1)=f(x 2)=> \\ & x 1=x 2 \cdot x 1=/=x 2=> \\ & f(x 1)=/=f(x 2) \cdot e x) \\ & f(a)=f(b)=>a=b . \\ & e x) f(x)=x+3 . f(a)= \\ & 7, a+3=7, a=4 . \\ & f(b)=7 . b=4 . f(a)=f(b) \\ & a=b, 1 t o 1 \end{aligned}$
To show that f is not injective	Find particular elements $x, y \in A$ such that $\mathrm{x} /=\mathrm{y}$ and $f(x)=f(y)$
To show that f is surjective	solve in terms of x. pick 2 random ys, if x eqns comes back in domain, surjective. domain matters, $\mathrm{Z}, \mathrm{R}, \mathrm{N}$ has to map x and y in same. ex) $f(x)=x+3$. $f(4)=7, f(5)=8$. always mapped, onto.
To show that f is not surjective	Find a particular $y \in$ B such that $f(x)=y$ for all $x \in A$
Bijective function	all range is mapped to and mapped to once (injective and surjective)

By j24

cheatography.com/j24/

Not published yet.
Last updated 26th October, 2023.
Page 1 of 4 .

[^0]| Functions (cont) | | Functions (cont) | | Proofs (cont) | | Proofs (cont) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inverse | has to be bijective. $\mathrm{f}^{\wedge}-1(\mathrm{y})=\mathrm{x}$ if and only if $f(x)=y$. because this is both 1to1 and onto, its a bijection, therefore invertible. | ex) let
 $\mathrm{f}(\mathrm{x})=$
 floor((x^{\wedge} -
 2)/2).
 find $f(S)$
 if $S=$
 $\{0,1,2,3\}$ | $\begin{aligned} & f(0)=0, f(1)=0 . f(2) \\ & =2, f(3)=4 \end{aligned}$ | Proof by contradiction | Assume ~p is true, find contradiction, therefore $\sim p$ is true. prove that p is true if we can show that $\neg p \rightarrow(r$ $\wedge \neg r)$ is true for some proposition r | UNIQUENESS
 proof | When asked for unique, prove exists, then unique. ex: x exists, $x=/=y$, so y doesnt have that property, therefore x is unique. |
| compos-
 ition of fns | $\mathrm{f}\left(\mathrm{g}(\mathrm{a})\right.$) or f o g $\mathrm{a}^{\text {a }}$ | equal
 functions | Two functions are equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain | Counterexample | to show that a statement of the form $\forall x P(x)$ is false, we need only find a counterexample. | | |
| floor/ceiling | bracketwithlow only/highonly. round down/up to nearest integer. ex) $\begin{aligned} & -2.2 \text { floor }=-3.5 .5 \\ & \text { ceil }=6 . \end{aligned}$ | | | Proof by exhuastion | | without loss of generality | an assumption in a proof that makes it possible to prove a theorem by reducing the number of cases to consider in the proof |
| properties | x floor $=\mathrm{n}$ if and only if $n \leq x<n+1$. x ciel $=\mathrm{n}$ if and only if $n-1<x \leq n$. x floor $=n$ if and only if $x-1<n \leq x$. x ciel $=n$ if and only if $\mathrm{x} \leq \mathrm{n}<\mathrm{x}+1 . \mathrm{x}-1$ $<$ floor $\leq x \leq$ ciel $<$ $x+1$. floor $=$ -cielx. cielx $=-$ floorx. $\operatorname{ciel}(x+n)=$ cielx +n . opp of last floor | Direct
 Proof | assume p is true, prove q. p => q.
 Always start with this then try contraposition. | | ex: Prove that ($n+$ 1) $3 \geq 3 n$ if n is a positive integer with $\mathrm{n} \leq 4$. Prove by doing $\mathrm{n}=$ 1,2,3,4 | | |
| | | | | Proof by cases | ex: Prove that if n is an integer, then $\mathrm{n} 2 \geq \mathrm{n}$. Case (i): When $\mathrm{n}=0$. Case (ii): When $n \geq 1$. Case (iii): In this case $\mathrm{n} \leq-1$ | Sets | |
| | | Proof by contraposition
 Vacuous proof | assume $\sim q$ is true, prove \sim p. $(\sim q=>\sim p)$ equals ($p=>q$) | | | Element
 of set $a \in A$
 roster $V=$
 method $\{1,3$, | $A, a \in / A$ $\begin{aligned} & \text { a, e, i, o, u\}, O = } \\ & \{, 7,9\} . \end{aligned}$ |
| | | | if we can show that p is false, then we have a proof, called a vacuous proof, of the conditional statement $p \rightarrow q$ | Constr-
 uctive
 Existence
 Proof | $\exists \mathrm{xP}(\mathrm{x})$. To find if $P(x)$ exists, show an example $\mathrm{P}(\mathrm{c})=$ True | set
 builder
 notation | ex: the set O of all odd positive integers less than 10 can be |
| | | | | Noncon-
 structive
 Existence
 Proof | Assume no values makes $\mathrm{P}(\mathrm{x})$ true. Then contradict. | $Z+\mid$ $10\}$ -1 \| $P(x)$ | x is odd and $x<$ $\begin{aligned} & \text { ex) } A=\{x \mid x \geq \\ & x<1\} \text {. ex) }\{x \end{aligned}$ |
| | | | | | | Interval $\quad[-2,8)$
 Notation | |
| | | | | | | $\begin{array}{ll} \text { Natural } \quad N= \\ \text { numbers } & \\ \mathrm{N} \end{array}$ | 0, 1, 2, 3, . \} |

By j24
cheatography.com/j24/

Not published yet.
Last updated 26th October, 2023.
Page 2 of 4.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

Sets (cont)	
Integers Z	$\begin{aligned} & Z=\{\ldots,-2,-1,0, \\ & 1,2, \ldots\} \end{aligned}$
Positive Integers Z+	Z+ = \{1, 2, 3, . .\}
Rational Numbers Q	$\begin{aligned} & Q=\{p / q \mid p \in Z, q \in \\ & Z, \text { and } q=/=0\} \end{aligned}$
Real Numbers R	All previous sets (N , Z, Q)
R+	positive real numbers
Complex numbers C	$\{a+b i, \ldots\}$
Equal Sets	Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x(x \in A$ $\leftrightarrow x \in B)$. We write A $=B$ if A and B are equal sets. Dont matter if its \{1,3,3,3,2,2,3,\}, still \{1,3,2\}. Also dont matter order.
Null/ Empty Set	\varnothing, nothing. $\}$.
$\{\varnothing\}$	1 element
Singleton set	One element.

Sets (cont)		Sets (cont)		
Universal Set U	Universe in context of statement. Example vowels in alphabet: $\mathrm{U}=$ $\{z, y, x, w, \ldots\}, A=$ $\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\} \mathrm{A}$ is a subset of U.	proper subset	$\begin{aligned} & \forall x(x \in A \rightarrow x \in B) \wedge \\ & \exists x(x \in B \wedge x \in A) A \subseteq B \end{aligned}$ but $\mathrm{A}=/=\mathrm{B}$. B contains an element not in A. Ex) $A=\{1,2,3\}$, $B=$ $\{1,2,3,4\} .4$ makes it proper subset.	
Subset	$\forall x(x \in A \rightarrow x \in B)$ $E x)$ the set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq$ B to indicate that A is a subset of the set B. Ex) $A=$ $\{1,2,3\}, B=$ $\{1,2,3,4\}, A \subseteq B$.	Cardin ality Power Set	\|A	Distinct elements of set. $A=\{1,2,3,3,4,4\}$ $\|A\|=4$ the power set of S is the set of all subsets of the set S . The power set of S is denoted by $\begin{aligned} & P(S) . E x) A=\{1,2,3\} . \\ & P(A)=\{\varnothing,\{0\},\{1\},\{2\}, \\ & \{0,1\},\{0,2\},\{1,2\},\{0, \\ & 1,2\}\} . E x) P(\{\varnothing\})=\{\varnothing, \\ & \{\varnothing\}\} \end{aligned}$
Showing that A is a Subset of B	To show that $\mathrm{A} \subseteq \mathrm{B}$, show that if x belongs to A then x also belongs to B.	Cardin ality of Power Set	$2^{\wedge} \mathrm{n}, \mathrm{n}$ is elements.	
Showing that A is Not a	To show that $\mathrm{A} \subseteq$ / B, find a single $x \in$ A such that $x \in / B$.	Tuple	$\begin{aligned} & (\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \ldots, \mathrm{an}) \\ & \text { Ordered. Ex) }(5,2)=/= \\ & (2,5) \end{aligned}$	

Sets (cont)	
Cartesian	$\{(a, b) \mid a \in A \wedge b \in$
Product	$B\}$. The Cartesian
	product of A and B,
	denoted by $A \times B$, is
	the set of all
	ordered pairs (a, b),
	where $a \in A$ and $b \in$
	B. Ex) $A=\{0,1\} B=$
	$\{2,3,4\}, A x B=$
	$\{(0,2),(0,3),(0,4)$,
	$(1,2),(1,3),(1,4)\}$
Truth Set	$P(x): a b s(x)=3$.
	Truth Set of $P(x)=$
	$\{3,-3\}$

Set Operations

Union $\quad A \cup B=\{x \mid x \in A \vee x \in$ $B\}$. Ex) $A=\{1,4,7\} B=$ $\{4,5,6\}$. $A \cup B=$ \{1,4,5,6,7\}
Inters- $\quad A \cap B=\{x \mid x \in A \wedge x \in$
ection $B\}$. Ex) $A=\{1,4,7\} B=$ $\{4,5,6\} . A \cap B=\{4\}$.
disjoint If $A \cap B=$ nothing, A and B are disjoint.

By j24

cheatography.com/j24/

Not published yet.
Last updated 26th October, 2023.
Page 3 of 4 .

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

Cheatography

A Cheat Sheet

by j24 via cheatography.com/195607/cs/41005/

Set Operations (cont)		Set Operations (cont)		Set Operations (cont)	
principle of inclusionexclusion \|A u $B\|=\|A\|+$ $\|B\|-\|A \cap B\|$	$\begin{aligned} & \text { ex) } A= \\ & \{1,2,3,4,5\}, B= \\ & \{4,5,6,7,8\} .\} A u \\ & B\|=\|A\|+\|B\|-\| A \\ & \text { n } B\}=5+5-2= \\ & 8 \end{aligned}$	Identity, , , , , , , absorbtion,	$\begin{aligned} & A \cap \cup=A \cdot A \cup \varnothing \\ & =A . \end{aligned}$	countable	a set that either is finite or can be placed in one-to-
		domination	$\begin{aligned} & A \cup U=U . A \cap \varnothing \\ & =\varnothing \end{aligned}$		one correspondence with the set
		idempotent	$A \cup A=A . A \cap A$		of positive integers.
$A-B$ difference of A and B	$\begin{aligned} & A-B=A \cap B \cdot\{x \mid \\ & x \in A \wedge x / \in B\} \end{aligned}$ Elements in A that are not in B. Ex) $\{1,3,5\}-\{1$, $2,3\}=\{5\}$. This is different from the difference of $\{1,2,3\}$ and $\{1$, $3,5\}$, which is the set $\{2\}$.		= A		To be countable,
		complementation	$\left(A^{C}\right) \mathrm{C}=\mathrm{A}$		1-1 and onto (bijection) between the
		commut-	$A \cup B=B \cup A . A$		set and \mathbb{N} ! (i.e. $\mathbb{Z}+$)
		ative	$B=B \cap A$	Ex) Show	Let $f(x)=2 x$. Then f
		associative	$\begin{aligned} & A \cup(B \cup C)=(A \\ & \cup B) \cup C . A \cap(B \cap \\ & C)=(A \cap B) \cap C \end{aligned}$	that the set of positive	is a bijection from N to E since f is both one-to-one and
		distributive	$A \cup(B \cap C)=(A$ $\cup B) \cap(A \cup C) . A$	even integers	onto. To show that it is one-to-one,
Complement of $A, A^{\wedge} C$	$\{x \in U \mid x / \in A\}$ Everything in the universe context thats not in A. $\begin{aligned} & E x) \cup=\{1,2,3,4\} . \\ & A=\{2\} B=\{3\} . \\ & A^{\wedge} c=\{1,3,4\} \end{aligned}$		$\cap(B \cup C)=(A \cap$ B) $\cup(A \cap C)$	E is countable	suppose that $\mathrm{f}(\mathrm{n})=$ $f(m)$. Then $2 n=2$
		de morgans	$\begin{aligned} & (A \cap b)^{C=A} c u \\ & B^{c \cdot(A \cup B)} C=A^{c n} \\ & B_{C} \end{aligned}$	set.	m , and so $\mathrm{n}=\mathrm{m}$. To see that it is onto, suppose that t is an
		absorption	$\begin{aligned} & A \cup(A \cap B)=A . A \\ & \cap(A \cup B)=A . \end{aligned}$		even positive integer. Then $t=2 k$
$\begin{aligned} & \mathrm{U}=\mathbb{R} \mathrm{A}= \\ & \{x \mid x \geq-1 \\ & \wedge x<1\}, \end{aligned}$	$\begin{aligned} & A \cup B=\{x \mid \square \\ & \square<1 \vee x \geq \end{aligned}$ 2\}. $A \cap B=$	complement	$\begin{aligned} & A \cup A^{C=U} \cdot A \cap A{ }_{C} \\ & =\varnothing . \end{aligned}$		integer k and $f(k)=$ t
$\mathrm{B}=\{x \mid x<$	$\{x \mid x<0 \wedge \square$				
$0 \vee x \geq 2\}$	$\begin{aligned} & \square \geq-1\} . A^{\wedge} \mathrm{C} \\ & =\{x \mid x<-1 \mathrm{~V} \\ & x \geq 1\} . \end{aligned}$				

By j24
cheatography.com/j24/

Not published yet.
Last updated 26th October, 2023.
Page 4 of 4 .

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

[^0]: Sponsored by ApolloPad.com
 Everyone has a novel in them. Finish
 Yours!
 https://apollopad.com

