### A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/

| Propositions                                |                                                            | Proposition                | s (cont)                                                                                                                                  | Functions (                              | cont)                                                                                                                                                                                         | Functions (                       | cont)                                                                                                                                                                                                            |
|---------------------------------------------|------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Different<br>Ways of<br>Expressing<br>p → q | ressing follows from p, p                                  | p <-> q<br>Logically       | if and only if. true if<br>and only if p and q<br>have the same<br>truth value ex) $p = t$<br>q = t or $p = f q = fp \equiv q. all truth$ | Injective<br>Function<br>(one to<br>one) | a function f is one-<br>to-one if and only if<br>f (a) =/= f (b)<br>whenever a =/= b.<br>each value in the<br>range is mapped to<br>exactly one element<br>of domain. (each<br>range value is | To show<br>that f is<br>injective | f(x1)=f(x2) =><br>x1=x2. x1=/=x2 =><br>f(x1)=/=f(x2). ex)<br>f(a) = f(b) => a=b.<br>ex) f(x) = x+3. f(a) =<br>7, a+3=7, a=4.                                                                                     |
| Propos-                                     | p.<br>True/False, with                                     | equivalent                 | values have to be<br>the equal aka                                                                                                        |                                          |                                                                                                                                                                                               |                                   | f(b)=7. b=4. f(a)=f(b)<br>a=b, 1to1                                                                                                                                                                              |
| ition                                       | no variables. Ex)                                          |                            | same results.                                                                                                                             |                                          |                                                                                                                                                                                               | To show                           | Find particular<br>elements x, $y \in A$<br>such that x /= y and<br>f (x) = f (y)                                                                                                                                |
|                                             | The sky is blue =<br>Prop. n+1 is even<br>Not prop bc n is | Negate<br>Quanti-<br>fiers | $\neg \forall x P (x) \equiv \exists x \neg P$<br>(x). $\neg \exists x Q(x) \equiv \forall x$<br>$\neg Q(x)$                              |                                          | mapped once).<br>$\forall a \forall b(f(a) = f(b) \rightarrow a = b)$ or equiva-                                                                                                              | that f is<br>not<br>injective     |                                                                                                                                                                                                                  |
|                                             | unknown.                                                   |                            |                                                                                                                                           |                                          | lently ∀a∀b(a =/= b<br>→ f (a) =/= f (b))                                                                                                                                                     | To show                           | solve in terms of x.<br>pick 2 random ys, if<br>x eqns comes back<br>in domain, surjec-<br>tive. domain<br>matters, Z, R, N has<br>to map x and y in<br>same. ex) f(x)=x+3.<br>f(4)=7, f(5)=8.<br>always mapped, |
| Tautology                                   | a proposition<br>which is always                           | Functions                  |                                                                                                                                           | Surjective                               | every element in<br>codomain maps to<br>at least one<br>element in domain.<br>(each element in                                                                                                | that f is<br>surjective           |                                                                                                                                                                                                                  |
|                                             | true. Ex) p ∨¬ p                                           | function<br>from A to      | an assignment of exactly one element                                                                                                      | function                                 |                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                  |
| contra-<br>diction                          | a proposition<br>which is always                           | B. f: A -><br>B            | of B to each<br>element of A                                                                                                              | (onto)                                   |                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                  |
| contin-<br>gency                            | false. Ex) p ∧¬ p<br>a proposition<br>which is neither a   | domain of<br>f             | the set A, where f is<br>a function from A to<br>B. ans is A                                                                              |                                          | codomain is<br>mapped). if and<br>only if for every                                                                                                                                           |                                   |                                                                                                                                                                                                                  |
|                                             | tautology nor a<br>contradiction, such<br>as p             | codomain<br>of f           | the set B, where f is a function from A to                                                                                                |                                          | element $b \in B$ there<br>is an element $a \in A$                                                                                                                                            | To show                           | onto.<br>Find a particular y ∈                                                                                                                                                                                   |
| satisfiable                                 | as p<br>at least one truth                                 | 1                          | B. ans is B                                                                                                                               |                                          | with f (a) = b                                                                                                                                                                                | that f is<br>not<br>surjective    | B such that $f(x) = y$<br>for all $x \in A$                                                                                                                                                                      |
|                                             | table is true.                                             | b is the<br>image of       | b = f (a). "what<br>does this map to"                                                                                                     |                                          |                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                  |
|                                             | Only false when p                                          | a under f                  |                                                                                                                                           |                                          |                                                                                                                                                                                               | Bijective                         | all range is mapped                                                                                                                                                                                              |
|                                             | = T q = F.<br>everthing else<br>true.                      | a is a<br>pre-<br>image of | f (a) = b. "what<br>values map to this".                                                                                                  |                                          |                                                                                                                                                                                               | function                          | to and mapped to once (injective and                                                                                                                                                                             |
| converse                                    | q -> p                                                     | b under f                  |                                                                                                                                           |                                          |                                                                                                                                                                                               |                                   | surjective)                                                                                                                                                                                                      |
| inverse                                     | -p -> -q                                                   | range                      | values of codomain                                                                                                                        |                                          |                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                  |
| contrapos-<br>itive                         | -q -> -p                                                   |                            | that were mapped to by domain.                                                                                                            |                                          |                                                                                                                                                                                               |                                   |                                                                                                                                                                                                                  |

С

cheatography.com/j24/

Not published yet. Last updated 26th October, 2023. Page 1 of 4. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/

| Functions (                | cont)                                                                                                                                                         | Functions                                                                    | (cont)                                     | Proofs (cont                                       | )                                                                                                                                                                                                                                                                                     | Proofs (co                  | nt)                                                                                                                       |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Inverse                    | has to be bijective.<br>$f^{-1}(y) = x$ if and<br>only if $f(x) = y$ .<br>because this is both<br>1to1 and onto, its a<br>bijection, therefore<br>invertible. | ex) let<br>f(x) =<br>floor((x^-<br>2)/2).<br>find f(S)<br>if S=<br>{0,1,2,3} | f(0) = 0, f(1) = 0. f(2)<br>= 2, f(3) = 4  | Proof by<br>contra-<br>diction                     | Assume ~p is true,<br>find contradiction,<br>therefore ~p is<br>true. prove that p<br>is true if we can<br>show that $\neg p \rightarrow (r$<br>$\land \neg r)$ is true for                                                                                                           | UNIQUEN                     | for unique,<br>prove exists,<br>then unique.<br>ex: x exists,<br>x=/=y , so y<br>doesnt have                              |
| compos-<br>ition of<br>fns | f(g(a)) or f o g(a)                                                                                                                                           | equal<br>functions                                                           |                                            | Counte-<br>rexample                                | some proposition r<br>to show that a<br>statement of the<br>form $\forall x P (x)$ is<br>false, we need<br>only find a counte-<br>rexample.                                                                                                                                           |                             | that property,<br>therefore x is<br>unique.                                                                               |
| floor/-<br>ceiling         | bracketwithlow<br>only/highonly.<br>round down/up to<br>nearest integer. ex)                                                                                  |                                                                              |                                            |                                                    |                                                                                                                                                                                                                                                                                       | without loss of generality  | an assumption<br>in a proof that<br>makes it<br>possible to                                                               |
|                            | -2.2 floor = -3. 5.5<br>ceil = 6.                                                                                                                             |                                                                              | element of the codomain                    | exhuastion 1<br>p<br>w<br>b                        | ex: Prove that $(n + 1)3 \ge 3n$ if n is a<br>positive integer<br>with $n \le 4$ . Prove<br>by doing $n = 1,2,3,4$<br>ex: Prove that if n<br>is an integer, then<br>$n2 \ge n$ . Case (i):<br>When $n = 0$ . Case<br>(ii): When $n \ge 1$ .<br>Case (iii): In this<br>case $n \le -1$ |                             | prove a theorem by                                                                                                        |
| properties                 | x floor = n if and<br>only if $n \le x < n + 1$ .<br>x ciel = n if and only<br>if $n - 1 < x \le n$ . x                                                       | Proofs<br>Direct<br>Proof                                                    | assume p is true,<br>prove q. p => q.      |                                                    |                                                                                                                                                                                                                                                                                       |                             | reducing the<br>number of<br>cases to<br>consider in the                                                                  |
|                            | floor = n if and only<br>if $x - 1 < n \le x$ . x<br>ciel = n if and only if                                                                                  |                                                                              | Always start with this then try contrapos- | Proof by<br>cases                                  |                                                                                                                                                                                                                                                                                       | Sets                        | proof                                                                                                                     |
|                            | $x \le n < x + 1, x - 1$<br>< floorx $\le x \le cielx <$<br>x + 1, floorx =                                                                                   | Proof by<br>contra-<br>position                                              | contra- prove ~p. (~q => ~p)               |                                                    |                                                                                                                                                                                                                                                                                       | Element<br>of set<br>roster | a ∈ A, a ∈/ A<br>V = {a, e, i, o, u}, O =                                                                                 |
|                            | -cielx. cielx = -                                                                                                                                             | Vacuous                                                                      | acuous if we can show that p               |                                                    |                                                                                                                                                                                                                                                                                       | method                      | {1, 3, 5, 7, 9}.                                                                                                          |
|                            | floorx. ciel(x + n) =<br>cielx + n. opp of last<br>floor                                                                                                      | proof                                                                        |                                            | Constr-<br>uctive<br>Existence<br>Proof<br>Noncon- | $\exists x P(x)$ . To find if<br>P(x) exists, show<br>an example P(c) =<br>True<br>Assume no values                                                                                                                                                                                   | set<br>builder<br>notation  | ex: the set O of all<br>odd positive integers<br>less than 10 can be<br>written as: O = {x $\in$<br>Z+   x is odd and x < |
|                            |                                                                                                                                                               |                                                                              |                                            | structive<br>Existence<br>Proof                    | makes P(x) true.<br>Then contradict.                                                                                                                                                                                                                                                  |                             | 10}. ex) A = $\{x   x \ge$<br>-1 $\land x <$ 1}. ex) $\{x   P(x)  $                                                       |
|                            |                                                                                                                                                               |                                                                              |                                            |                                                    |                                                                                                                                                                                                                                                                                       | Interval<br>Notation        | [-2,8)                                                                                                                    |

Natural N = {0, 1, 2, 3, . . .} numbers

By **j24** 

cheatography.com/j24/

Not published yet. Last updated 26th October, 2023. Page 2 of 4.

#### Sponsored by ApolloPad.com

Ν

Everyone has a novel in them. Finish Yours! https://apollopad.com

#### A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/

| Sets (cont)                                                        | )                                                                                                                                                                                                                                                                                                        | Sets (cont)                                                                                                            |                                                                                                                                                                                               | Sets (co                              | nt)                                                                                                                                                                                                                                                                                                          | Sets (con            | it)                                                                                                                                        |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Integers<br>Z<br>Positive<br>Integers<br>Z+<br>Rational<br>Numbers | $Z = \{\dots, -2, -1, 0, \\ 1, 2, \dots\}$ $Z + = \{1, 2, 3, \dots\}$ $Q = \{p/q \mid p \in Z, q \in \\ Z, and q = = 0\}$                                                                                                                                                                                | Universal<br>Set U                                                                                                     | Universe in context<br>of statement.<br>Example vowels in<br>alphabet: U =<br>{z,y,x,w,}, A =<br>{a,e,i,o,u} A is a<br>subset of U.                                                           | proper<br>subset                      | $ \begin{aligned} \forall x (x \in A \rightarrow x \in B) \land \\ \exists x (x \in B \land x \in A) A \subseteq B \\ \text{but } A = /= B. \text{ B contains} \\ \text{an element not in } A. \\ \text{Ex) } A = \{1,2,3\}, B = \\ \{1,2,3,4\}. \text{ 4 makes it} \\ \text{proper subset.} \end{aligned} $ | Cartesiar<br>Product | B}. The Cartesian<br>product of A and B,<br>denoted by A × B, is<br>the set of all<br>ordered pairs (a, b),<br>where $a \in A$ and $b \in$ |
| Q<br>Real<br>Numbers                                               | All previous sets (N, Z, Q)                                                                                                                                                                                                                                                                              | Subset                                                                                                                 | $\forall x(x \in A \rightarrow x \in B).$<br>Ex) the set A is a<br>subset of B if and<br>only if every                                                                                        | Cardin<br>ality                       | A  Distinct elements of<br>set. A = {1,2,3,3,4,4}<br> A  = 4                                                                                                                                                                                                                                                 |                      | B. Ex) A = {0,1} B =<br>{2,3,4}, A x B =<br>{(0,2),(0,3),(0,4),<br>(1,2),(1,3),(1,4)}                                                      |
| R<br>R+                                                            | positive real<br>numbers                                                                                                                                                                                                                                                                                 |                                                                                                                        | element of A is also<br>an element of B. We<br>use the notation $A \subseteq$<br>B to indicate that A<br>is a subset of the<br>set B. Ex) $A =$<br>{1,2,3, B =<br>{1,2,3,4}, A $\subseteq$ B. | Set the set of P(S).<br>P(A) = {0, 1} | the power set of S is<br>the set of all subsets of<br>the set S. The power<br>set of S is denoted by                                                                                                                                                                                                         | Truth Set            |                                                                                                                                            |
| Complex numbers                                                    | {a+bi,}                                                                                                                                                                                                                                                                                                  |                                                                                                                        |                                                                                                                                                                                               |                                       | P(S). Ex) A = {1,2,3}.<br>P(A) = {Ø, {0}, {1}, {2},                                                                                                                                                                                                                                                          | Set Operations       |                                                                                                                                            |
| C<br>Equal<br>Sets                                                 | Two sets are equal if and only if they                                                                                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                                                                                               |                                       | {0, 1}, {0, 2}, {1, 2}, {0,<br>1, 2}. Ex) P({Ø}) = {Ø,<br>{Ø}}                                                                                                                                                                                                                                               | Union                | A $\cup$ B = {x   x $\in$ A $\lor$ x $\in$<br>B}. Ex) A = {1,4,7} B =<br>{4,5,6}. A $\cup$ B =                                             |
|                                                                    | have the same<br>elements.<br>Therefore, if A and<br>B are sets, then A<br>and B are equal if<br>and only if $\forall x(x \in A$<br>$\leftrightarrow x \in B)$ . We write A<br>= B if A and B are<br>equal sets. Dont<br>matter if its<br>{1,3,3,3,2,2,3,}, still<br>{1,3,2}. Also dont<br>matter order. | that A is show that if<br>a Subset belongs to a<br>of B also belong<br>Showing To show that<br>that A is B, find a sir | To show that $A \subseteq B$ ,<br>show that if x<br>belongs to A then x<br>also belongs to B.                                                                                                 | Cardin<br>ality of<br>Power<br>Set    | 2^n, n is elements.                                                                                                                                                                                                                                                                                          | Inters-<br>ection    | $\{1,4,5,6,7\}$<br>A $\cap$ B = $\{x \mid x \in A \land x \in$<br>B}. Ex) A = $\{1,4,7\}$ B =<br>$\{4,5,6\}$ . A $\cap$ B = $\{4\}$ .      |
|                                                                    |                                                                                                                                                                                                                                                                                                          |                                                                                                                        | To show that $A \subseteq /$<br>B, find a single $x \in$<br>A such that $x \in /$ B.                                                                                                          | Tuple                                 | (a1,a2,a3,, an)<br>Ordered. Ex) (5,2) =/=<br>(2,5)                                                                                                                                                                                                                                                           |                      | If $A \cap B$ = nothing, A<br>and B are disjoint.                                                                                          |
|                                                                    |                                                                                                                                                                                                                                                                                                          | Showing<br>Two Sets<br>are<br>Equal                                                                                    | To see if $A = B$ ,<br>Show $A \subseteq B$ and $B \subseteq A$                                                                                                                               |                                       |                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                            |
| Null/<br>Empty<br>Set                                              | $\emptyset$ , nothing. {}.                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                                                                                                                                                               |                                       |                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                            |
| {Ø}                                                                | 1 element                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                                                                                                                                               |                                       |                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                            |
| Singleton<br>set                                                   | One element.                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                                                                                                               |                                       |                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                            |
|                                                                    | By <b>i24</b>                                                                                                                                                                                                                                                                                            |                                                                                                                        | Not published vet                                                                                                                                                                             |                                       | Choncor                                                                                                                                                                                                                                                                                                      | ed by <b>Apolic</b>  | Dad com                                                                                                                                    |



By j24 cheatography.com/j24/ Not published yet. Last updated 26th October, 2023. Page 3 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

### A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/

| Set Operations                                                                          | s (cont)                                                                                                                                                                                                                                        | Set Operation                                      | is (cont)                                                                                      | Set Operati                    | ions (cont)                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| principle of<br>inclusion–<br>exclusion $ A$<br>$\cup B  =  A  +$<br>$ B  -  A \cap B $ | ex) A =<br>{1,2,3,4,5}, B =<br>{4,5,6,7,8}. }A u<br>B  =  A  +  B  - A                                                                                                                                                                          | Identity, , , , , , , , , , , , , absorb-<br>tion, | $A \cap U = A. A \cup \emptyset$<br>= A.                                                       | countable                      | a set that either is<br>finite or can be<br>placed in one-to-<br>one correspon-<br>dence with the set<br>of positive integers.<br>To be countable,<br>there must exist a<br>1-1 and onto (bijec-<br>tion) between the<br>set and $\mathbb{N}!$ (i.e. $\mathbb{Z}+$ )<br>Let f(x) = 2x. Then f<br>is a bijection from N<br>to E since f is both<br>one-to-one and |
|                                                                                         | n B} = 5 + 5 - 2 =<br>8                                                                                                                                                                                                                         | domination                                         | $A \cup U = U. A \cap \emptyset$<br>= $\emptyset$                                              |                                |                                                                                                                                                                                                                                                                                                                                                                  |
| A – B,<br>difference of<br>A and B                                                      | A - B = A $\cap$ B. {x  <br>x $\in$ A $\land$ x / $\in$ B}<br>Elements in A<br>that are not in B.<br>Ex) {1, 3, 5} - {1,<br>2, 3} = {5}. This<br>is different from<br>the difference of<br>{1, 2, 3} and {1,<br>3, 5}, which is<br>the set {2}. | idempotent                                         | $A \cup A = A. A \cap A$<br>= A                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                                                                                 | complemen-<br>tation                               | $(A^{c})c = A$                                                                                 |                                |                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                                                                                 | commut-<br>ative                                   | $A \cup B = B \cup A. A$ $\cap B = B \cap A$                                                   | Ex) Show                       |                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                                                                                 | associative                                        | $A \cup (B \cup C) = (A$ $\cup B) \cup C. A \cap (B \cap$ $C) = (A \cap B) \cap C$             | that the<br>set of<br>positive |                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                                                                                 | distributive                                       | $A \cup (B \cap C) = (A \cup B) \cap (A \cup C). A$                                            | even<br>integers               | onto. To show that it is one-to-one,                                                                                                                                                                                                                                                                                                                             |
| Complement<br>of A, A <sup>^</sup> c                                                    | $ \{x \in U \mid x \not \in A\} $<br>Everything in the universe context thats not in A.<br>Ex) U = {1,2,3,4}.<br>A = {2} B = {3}.<br>A^c = {1,3,4}                                                                                              |                                                    | ∩ (B ∪ C) = (A ∩<br>B) ∪ (A ∩ C)                                                               | E is<br>countable              | suppose that f( n) =<br>f( m). Then 2 n = 2<br>m, and so n = m. To<br>see that it is onto,<br>suppose that t is an<br>even positive<br>integer. Then t = 2k                                                                                                                                                                                                      |
|                                                                                         |                                                                                                                                                                                                                                                 | de morgans                                         | (A n b) <sup>c = A</sup> c u<br>B <sup>c. (A U B)</sup> c = A <sup>c n</sup><br><sup>B</sup> c | set.                           |                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                         |                                                                                                                                                                                                                                                 | absorption                                         | $A \cup (A \cap B) = A. A$<br>$\cap (A \cup B) = A.$                                           |                                |                                                                                                                                                                                                                                                                                                                                                                  |
| $U = \mathbb{R} A =$<br>$\{x   x \ge -1$<br>$\land x \le 1\},$                          | $A \cup B = \{x   \square$ $\square < 1 \lor x \ge$ $2\}. A \cap B =$                                                                                                                                                                           | complement                                         | $A \cup A^{c = U. A \cap A} c$ $= \emptyset.$                                                  |                                | for some positive<br>integer k and f(k) =<br>t                                                                                                                                                                                                                                                                                                                   |
| $B = \{x   x < 0 \lor x \ge 2\}$                                                        | $\begin{cases} x   x < 0 \land \Box \\ \Box \ge -1 \end{cases}. A^{c}$                                                                                                                                                                          |                                                    |                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                  |

#### By **j24**

cheatography.com/j24/

 $= \{x | x < -1 \lor x \ge 1\}.$ 

Not published yet. Last updated 26th October, 2023. Page 4 of 4. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com