A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/ | Propositions | | Proposition | s (cont) | Functions (cont) | | Functions (| Functions (cont) | | |---|--|--|---|---|--|--|--|--| | Different Ways of Expressing p → q | q unless ¬p, q if p,
q whenever p, q
follows from p, p
only if q, q when p,
p is sufficient for q,
q is necessary for | p <-> q Logically | if and only if. true if
and only if p and q
have the same
truth value ex) $p = t$
q = t or $p = f$ $q = fp = q$. all truth | Injective
Function
(one to
one) | a function f is one-
to-one if and only if
f (a) =/= f (b)
whenever a =/= b.
each value in the
range is mapped to | To show that f is injective | f(x1)=f(x2) =>
x1=x2. x1=/=x2 =>
f(x1)=/=f(x2). ex)
f(a) = f(b) => a=b.
ex) f(x) = x+3. f(a) =
7, a+3=7, a=4. | | | Propos- | p.
True/False, with | equivalent | values have to be the equal aka | | exactly one element of domain. (each | | f(b)=7. b=4. f(a)=f(b)
a=b, 1to1 | | | ition no variables. Ex) The sky is blue = Prop. n+1 is even Not prop bc n is | Negate
Quanti-
fiers | same results. $\neg \forall x P (x) \equiv \exists x \neg P$ $(x). \neg \exists x Q(x) \equiv \forall x$ $\neg Q(x)$ | | range value is
mapped once).
$\forall a \forall b (f(a) = f(b) \rightarrow a = b)$ or equiva- | To show
that f is
not
injective | Find particular
elements x , $y \in A$
such that $x \neq y$ and
f(x) = f(y) | | | | Tautalanu | unknown. | Functions | | lently $\forall a \forall b (a = /= b)$
$\Rightarrow f(a) = /= f(b)$ | | To show that f is surjective | solve in terms of x. pick 2 random ys, if x eqns comes back in domain, surjec- | | | Tautology a proposition which is always true. Ex) p V¬ p | functions
function
from A to | an assignment of exactly one element | Surjective function | every element in codomain maps to | | | | | | contra-
diction | a proposition which is always | B. f: A -> | of B to each
element of A | (onto) | at least one
element in domain.
(each element in
codomain is
mapped). if and
only if for every
element $b \in B$ there
is an element $a \in A$
with $f(a) = b$ | | tive. domain
matters, Z, R, N has
to map x and y in
same. ex) f(x)=x+3.
f(4)=7, f(5)=8.
always mapped, | | | contin-
gency v | false. Ex) p A¬ p a proposition which is neither a tautology nor a contradiction, such as p | domain of | the set A, where f is
a function from A to
B. ans is A | | | | | | | | | codomain of f | the set B, where f is a function from A to B. ans is B | | | To show | onto. Find a particular y ∈ | | | satisfiable | at least one truth table is true. | b is the image of | b = f (a). "what
does this map to" | | with (a) – b | that f is
not
surjective | B such that $f(x) = y$
for all $x \in A$ | | | p -> q | Only false when p
= T q = F.
everthing else
true. | a under f | · | | | Bijective | all range is mapped | | | | | a is a pre-image of | f (a) = b. "what values map to this". | | | function | to and mapped to once (injective and surjective) | | | converse | q -> p | b under f | | | | | Surjective) | | | inverse | -p -> -q | range | values of codomain | | | | | | | contrapos-
itive | -q -> -p | | that were mapped to by domain. | | | | | | By **j24** cheatography.com/j24/ Not published yet. Last updated 26th October, 2023. Page 1 of 4. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours! https://apollopad.com ## A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/ | Functions (cont) | | Functions (cont) | | Proofs (cont) | | Proofs (cont) | | | |---|--|--|--|--|--|------------------------------|-------------|--| | Inverse compos- | has to be bijective.
$f^{-1}(y) = x$ if and
only if $f(x) = y$.
because this is both
1to 1 and onto, its a
bijection, therefore
invertible.
$f(g(a))$ or $f \circ g(a)$ | ex) let $f(x) = floor((x^2-2)/2)$. find $f(S)$ if $S=\{0,1,2,3\}$ equal | f(0) = 0, $f(1) = 0$. $f(2)= 2, f(3) = 4$ | Proof by
contra-
diction | Assume \sim p is true, find contradiction, therefore \sim p is true. prove that p is true if we can show that \neg p \rightarrow (r $\land \neg$ r) is true for some proposition r | UNIQUEN
proof | IESS | When asked for unique, prove exists, then unique. ex: x exists, x=/=y, so y doesnt have that property, | | ition of fns | | functions | equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain | Counte-
rexample | to show that a statement of the form ∀xP (x) is false, we need only find a counterexample. | | | therefore x is unique. | | floor/-
ceiling | bracketwithlow
only/highonly.
round down/up to
nearest integer. ex) | | | | | without loss o
generality | ss of | in a proof that
makes it
possible to | | | -2.2 floor = -3. 5.5 ceil = 6. | | | Proof by exhuastion | ex: Prove that $(n + 1)3 \ge 3n$ if n is a | | | prove a theorem by reducing the | | i () () () () () () () () () (| roperties x floor = n if and only if $n \le x < n + 1$.
x ciel = n if and only if $n - 1 < x \le n$. x floor = n if and only if $x - 1 < n \le x$. x ciel = n if and only if $x \le n < x + 1$. $x - 1$ $<$ floor $x \le x \le x$ ciel \ge $ | Proofs | | | positive integer
with n ≤ 4. Prove | | | number of | | | | Direct
Proof | assume p is true, prove q. p => q. Always start with this then try contraposition. assume \sim q is true, prove \sim p. (\sim q => \sim p) equals (p => q) if we can show that p is false, then we have a proof, called a vacuous proof, of the conditional statement p \rightarrow q | Proof by cases | by doing $n = 1,2,3,4$
ex: Prove that if n is an integer, then $n2 \ge n$. Case (i): When $n = 0$. Case (ii): When $n \ge 1$. Case (iii): In this case $n \le -1$ | | | cases to consider in the proof | | | | | | | | Sets | | | | | | Proof by contraposition Vacuous proof | | | | Element of set | | A, a ∈/ A | | | | | | | | roster
method | | {a, e, i, o, u}, O =
, 5, 7, 9}. | | | | | | Constr-
uctive
Existence
Proof | $\exists x P(x)$. To find if $P(x)$ exists, show an example $P(c)$ = True | set
builder
notation | odd
less | ex: the set O of all odd positive integers ess than 10 can be written as: $O = \{x \in A\}$ | | | | | | Noncon-
structive
Existence
Proof | Assume no values makes P(x) true. Then contradict. | | 10}. | x is odd and x < ex) $A = \{x x \ge x < 1\}$. ex) $\{x < x < 1\}$. ex) $\{x < x < 1\}$. | | | | | | | | Interval
Notation | [-2,8 |) | | | | | | | | Natural
numbers
N | N = { | {0, 1, 2, 3,} | By **j24** cheatography.com/j24/ Not published yet. Last updated 26th October, 2023. Page 2 of 4. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours! https://apollopad.com ## A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/ | Sets (cont) | | Sets (cont) | | Sets (cont) | | Sets (cont) | | |------------------------|---|-------------------------------------|---|-----------------------------|--|---------------------|---| | Integers | $Z = \{\ldots, -2, -1, 0,$ | Universal | Universe in context | proper | $\forall x(x\in A\to x\in B)\ \land$ | Cartesia | | | Z Positive Integers Z+ | 1, 2,} $Z+ = \{1, 2, 3,\}$ | Set U | of statement. Example vowels in alphabet: U = {z,y,x,w,}, A = {a,e,i,o,u} A is a | subset | $\exists x(x \in B \land x \in A)A \subseteq B$
but $A = /= B$. B contains
an element not in A.
Ex) $A = \{1,2,3\}$, $B = \{1,2,3,4\}$. 4 makes it | Product | B}. The Cartesian product of A and B, denoted by A × B, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Ex) $A = \{0,1\}$ $B = \{2,3,4\}$, A x B = $\{(0,2),(0,3),(0,4),(1,2),(1,4)\}$ | | Rational
Numbers | Q = $\{p/q \mid p \in Z, q \in Z, and q = /= 0\}$ | | subset of U. | | proper subset. | | | | Q
Real
Numbers | All previous sets (N, Z, Q) | Subset | $\forall x(x \in A \rightarrow x \in B).$
Ex) the set A is a subset of B if and | Cardin
ality | A Distinct elements of
set. A = {1,2,3,3,4,4}
 A = 4 | | | | R | _, _, | | only if every element of A is also | Power | the power set of S is | Truth Se | (1,2),(1,3),(1,4)
t P(x): abs(x) = 3. | | R+ | positive real numbers | | an element of B. We use the notation A ⊆ | Set | the set of all subsets of
the set S. The power
set of S is denoted by | Trutti Ge | Truth Set of $P(x) = \{3,-3\}$ | | Complex | {a+bi,} | | B to indicate that A is a subset of the set B. Ex) A = $\{1,2,3\}$, B = $\{1,2,3,4\}$, A \subseteq B. | | $P(S)$. Ex) $A = \{1,2,3\}$. | | | | numbers
C | | | | | $P(A) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}. Ex) P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$ | Set Oper | | | Equal
Sets | Equal Two sets are equal | | | | | | $A \cup B = \{x \mid x \in A \lor x \in B\}. Ex) A = \{1,4,7\} B = \{4,5,6\}. A \cup B =$ | | | | Showing
that A is
a Subset | To show that $A \subseteq B$,
show that if x
belongs to A then x | Cardin
ality of
Power | 2 ⁿ , n is elements. | Inters-
ection | $\{1,4,5,6,7\}$
A \(\text{n}\) B = $\{x \mid x \in A \land x \in B\}$. Ex\(\text{A}\) A = $\{1,4,7\}$ B = | | | | of B | also belongs to B. | Set | | ection | $\{4,5,6\}$. A \cap B = $\{4\}$. | | | | that A is | To show that $A \subseteq I$
B, find a single $x \in A$ such that $x \in I$ B. | Tuple | (a1,a2,a3,, an)
Ordered. Ex) (5,2) =/= | disjoint | If $A \cap B =$ nothing, A and B are disjoint. | | | | | | | (2,5) | | | | | | Showing
Two Sets
are
Equal | To see if $A = B$,
Show $A \subseteq B$ and B
$\subseteq A$ | | | | | | Null/
Empty
Set | \emptyset , nothing. {}. | Equal | | | | | | | {∅} | 1 element | | | | | | | | Singleton set | One element. | | | | | | | | | By j24 | | Not published yet. | | Sponsor | ed by Apollo | Pad com | By **j24** cheatography.com/j24/ Not published yet. Last updated 26th October, 2023. Page 3 of 4. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com ## A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/ | Set Operation | s (cont) | Set Operation | Set Operations (cont) Set Operations (cont) | | ions (cont) | |--|---|---------------------------------------|---|---------------------------------------|--| | principle of inclusion– exclusion A ∪ B = A + B - A ∩ B | ex) A = {1,2,3,4,5}, B = {4,5,6,7,8}. }A u B = A + B - A n B} = 5 + 5 - 2 = 8 | Identity, , , , , , , , , absorbtion, | A ∩ U = A. A ∪ Ø
= A. | countable | a set that either is finite or can be placed in one-to-one correspondence with the set of positive integers. To be countable, there must exist a 1-1 and onto (bijection) between the set and $\mathbb{N}!$ (i.e. $\mathbb{Z}+$) Let $f(x) = 2x$. Then f is a bijection from \mathbb{N} to \mathbb{E} since f is both one-to-one and onto. To show that it is one-to-one, suppose that $f(n) = f(m)$. Then $2 = 2m$, and so $n = m$. To see that it is onto, suppose that $f(n) = f(m)$ is an even positive integer. Then $f(n) = f(m)$ is an even positive integer $f(n) = f(m)$. | | | | domination | $A \cup U = U. A \cap \emptyset$
= \emptyset | | | | A - B, | A - B = A \cap B. $\{x \mid x \in A \land x \neq B\}$
Elements in A
that are not in B.
Ex) $\{1, 3, 5\} - \{1, 2, 3\} = \{5\}$. This
is different from
the difference of
$\{1, 2, 3\}$ and $\{1, 3, 5\}$, which is
the set $\{2\}$. | idempotent | $A \cup A = A$. $A \cap A$ | t t s Ex) Show L that the is set of t | | | difference of A and B | | complemen-
tation | $(A^{c)}c = A$ | | | | | | commut-
ative | $A \cup B = B \cup A$. $A \cap B = B \cap A$ | | | | | | associative | $A \cup (B \cup C) = (A \cup B) \cup C$. $A \cap (B \cap C) = (A \cap B) \cap C$ | | | | | | distributive | $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. A | even
integers | | | Complement of A, A^c | $\{x \in U \mid x \neq A\}$
Everything in the universe context thats not in A.
Ex) $U = \{1,2,3,4\}$.
$A = \{2\}$ B = $\{3\}$.
$A^c = \{1,3,4\}$ | | $ \cap (B \cup C) = (A \cap B) \cup (A \cap C) $ | E is countable | | | | | de morgans | $(A n b)^{c = A} c u$
$B^{c. (A \cup B)} c = A^{c n}$ | set. | | | | | absorption | $A \cup (A \cap B) = A. A$
$\cap (A \cup B) = A.$ | | | | $U = \mathbb{R} A = $ $\{x x \ge -1$ $\land x < 1\},$ | $A \cup B = \{x \square$
$\square < 1 \lor x \ge$
$2\}. A \cap B =$ | complement | $A \cup A^{c = U. A \cap A} c$ $= \emptyset.$ | | | | $B = \{x \mid x < 0 \lor x \ge 2\}$ | $\{x x < 0 \land \square$ $\square \ge -1\}. A^{\circ}c$ $= \{x x < -1 \lor x \ge 1\}.$ | | | | | By j24 cheatography.com/j24/ Not published yet. Last updated 26th October, 2023. Page 4 of 4. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours! https://apollopad.com