

A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/

Propositions		Proposition	s (cont)	Functions (cont)		Functions (Functions (cont)	
Different Ways of Expressing p → q	q unless ¬p, q if p, q whenever p, q follows from p, p only if q, q when p, p is sufficient for q, q is necessary for	p <-> q Logically	if and only if. true if and only if p and q have the same truth value ex) $p = t$ q = t or $p = f$ $q = fp = q$. all truth	Injective Function (one to one)	a function f is one- to-one if and only if f (a) =/= f (b) whenever a =/= b. each value in the range is mapped to	To show that f is injective	f(x1)=f(x2) => x1=x2. x1=/=x2 => f(x1)=/=f(x2). ex) f(a) = f(b) => a=b. ex) f(x) = x+3. f(a) = 7, a+3=7, a=4.	
Propos-	p. True/False, with	equivalent	values have to be the equal aka		exactly one element of domain. (each		f(b)=7. b=4. f(a)=f(b) a=b, 1to1	
ition no variables. Ex) The sky is blue = Prop. n+1 is even Not prop bc n is	Negate Quanti- fiers	same results. $\neg \forall x P (x) \equiv \exists x \neg P$ $(x). \neg \exists x Q(x) \equiv \forall x$ $\neg Q(x)$		range value is mapped once). $\forall a \forall b (f(a) = f(b) \rightarrow a = b)$ or equiva-	To show that f is not injective	Find particular elements x , $y \in A$ such that $x \neq y$ and f(x) = f(y)		
Tautalanu	unknown.	Functions		lently $\forall a \forall b (a = /= b)$ $\Rightarrow f(a) = /= f(b)$		To show that f is surjective	solve in terms of x. pick 2 random ys, if x eqns comes back in domain, surjec-	
Tautology a proposition which is always true. Ex) p V¬ p	functions function from A to	an assignment of exactly one element	Surjective function	every element in codomain maps to				
contra- diction	a proposition which is always	B. f: A ->	of B to each element of A	(onto)	at least one element in domain. (each element in codomain is mapped). if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a) = b$		tive. domain matters, Z, R, N has to map x and y in same. ex) f(x)=x+3. f(4)=7, f(5)=8. always mapped,	
contin- gency v	false. Ex) p A¬ p a proposition which is neither a tautology nor a contradiction, such as p	domain of	the set A, where f is a function from A to B. ans is A					
		codomain of f	the set B, where f is a function from A to B. ans is B			To show	onto. Find a particular y ∈	
satisfiable	at least one truth table is true.	b is the image of	b = f (a). "what does this map to"		with (a) – b	that f is not surjective	B such that $f(x) = y$ for all $x \in A$	
p -> q	Only false when p = T q = F. everthing else true.	a under f	·			Bijective	all range is mapped	
		a is a pre-image of	f (a) = b. "what values map to this".			function	to and mapped to once (injective and surjective)	
converse	q -> p	b under f					Surjective)	
inverse	-p -> -q	range	values of codomain					
contrapos- itive	-q -> -p		that were mapped to by domain.					

By **j24** cheatography.com/j24/

Not published yet. Last updated 26th October, 2023. Page 1 of 4. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com

A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/

Functions (cont)		Functions (cont)		Proofs (cont)		Proofs (cont)		
Inverse compos-	has to be bijective. $f^{-1}(y) = x$ if and only if $f(x) = y$. because this is both 1to 1 and onto, its a bijection, therefore invertible. $f(g(a))$ or $f \circ g(a)$	ex) let $f(x) = floor((x^2-2)/2)$. find $f(S)$ if $S=\{0,1,2,3\}$ equal	f(0) = 0, $f(1) = 0$. $f(2)= 2, f(3) = 4$	Proof by contra- diction	Assume \sim p is true, find contradiction, therefore \sim p is true. prove that p is true if we can show that \neg p \rightarrow (r $\land \neg$ r) is true for some proposition r	UNIQUEN proof	IESS	When asked for unique, prove exists, then unique. ex: x exists, x=/=y, so y doesnt have that property,
ition of fns		functions	equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain	Counte- rexample	to show that a statement of the form ∀xP (x) is false, we need only find a counterexample.			therefore x is unique.
floor/- ceiling	bracketwithlow only/highonly. round down/up to nearest integer. ex)					without loss o generality	ss of	in a proof that makes it possible to
	-2.2 floor = -3. 5.5 ceil = 6.			Proof by exhuastion	ex: Prove that $(n + 1)3 \ge 3n$ if n is a			prove a theorem by reducing the
i () () () () () () () () () (roperties x floor = n if and only if $n \le x < n + 1$. x ciel = n if and only if $n - 1 < x \le n$. x floor = n if and only if $x - 1 < n \le x$. x ciel = n if and only if $x \le n < x + 1$. $x - 1$ $<$ floor $x \le x \le x$ ciel $x \ge $	Proofs			positive integer with n ≤ 4. Prove			number of
		Direct Proof	assume p is true, prove q. p => q. Always start with this then try contraposition. assume \sim q is true, prove \sim p. (\sim q => \sim p) equals (p => q) if we can show that p is false, then we have a proof, called a vacuous proof, of the conditional statement p \rightarrow q	Proof by cases	by doing $n = 1,2,3,4$ ex: Prove that if n is an integer, then $n2 \ge n$. Case (i): When $n = 0$. Case (ii): When $n \ge 1$. Case (iii): In this case $n \le -1$			cases to consider in the proof
						Sets		
		Proof by contraposition Vacuous proof				Element of set		A, a ∈/ A
						roster method		{a, e, i, o, u}, O = , 5, 7, 9}.
				Constr- uctive Existence Proof	$\exists x P(x)$. To find if $P(x)$ exists, show an example $P(c)$ = True	set builder notation	odd less	ex: the set O of all odd positive integers ess than 10 can be written as: $O = \{x \in A\}$
				Noncon- structive Existence Proof	Assume no values makes P(x) true. Then contradict.		10}.	x is odd and x < ex) $A = \{x x \ge x < 1\}$. ex) $\{x < x < 1\}$. ex) $\{x < x < 1\}$.
						Interval Notation	[-2,8)
						Natural numbers N	N = {	{0, 1, 2, 3,}

By **j24** cheatography.com/j24/

Not published yet. Last updated 26th October, 2023. Page 2 of 4. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com

A Cheat Sheet

by j24 via cheatography.com/195607/cs/41005/

Sets (cont)		Sets (cont)		Sets (cont)		Sets (cont)	
Integers	$Z = \{\ldots, -2, -1, 0,$	Universal	Universe in context	proper	$\forall x(x\in A\to x\in B)\ \land$	Cartesia	
Z Positive Integers Z+	1, 2,} $Z+ = \{1, 2, 3,\}$	Set U	of statement. Example vowels in alphabet: U = {z,y,x,w,}, A = {a,e,i,o,u} A is a	subset	$\exists x(x \in B \land x \in A)A \subseteq B$ but $A = /= B$. B contains an element not in A. Ex) $A = \{1,2,3\}$, $B = \{1,2,3,4\}$. 4 makes it	Product	B}. The Cartesian product of A and B, denoted by A × B, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Ex) $A = \{0,1\}$ $B = \{2,3,4\}$, A x B = $\{(0,2),(0,3),(0,4),(1,2),(1,4)\}$
Rational Numbers	Q = $\{p/q \mid p \in Z, q \in Z, and q = /= 0\}$		subset of U.		proper subset.		
Q Real Numbers	All previous sets (N, Z, Q)	Subset	$\forall x(x \in A \rightarrow x \in B).$ Ex) the set A is a subset of B if and	Cardin ality	A Distinct elements of set. A = {1,2,3,3,4,4} A = 4		
R	_, _,		only if every element of A is also	Power	the power set of S is	Truth Se	(1,2),(1,3),(1,4) t P(x): abs(x) = 3.
R+	positive real numbers		an element of B. We use the notation A ⊆	Set	the set of all subsets of the set S. The power set of S is denoted by	Trutti Ge	Truth Set of $P(x) = \{3,-3\}$
Complex	{a+bi,}		B to indicate that A is a subset of the set B. Ex) A = $\{1,2,3\}$, B = $\{1,2,3,4\}$, A \subseteq B.		$P(S)$. Ex) $A = \{1,2,3\}$.		
numbers C					$P(A) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}. Ex) P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$	Set Oper	
Equal Sets	Equal Two sets are equal						$A \cup B = \{x \mid x \in A \lor x \in B\}. Ex) A = \{1,4,7\} B = \{4,5,6\}. A \cup B =$
		Showing that A is a Subset	To show that $A \subseteq B$, show that if x belongs to A then x	Cardin ality of Power	2 ⁿ , n is elements.	Inters- ection	$\{1,4,5,6,7\}$ A \(\text{n}\) B = $\{x \mid x \in A \land x \in B\}$. Ex\(\text{A}\) A = $\{1,4,7\}$ B =
		of B	also belongs to B.	Set		ection	$\{4,5,6\}$. A \cap B = $\{4\}$.
		that A is	To show that $A \subseteq I$ B, find a single $x \in A$ such that $x \in I$ B.	Tuple	(a1,a2,a3,, an) Ordered. Ex) (5,2) =/=	disjoint	If $A \cap B =$ nothing, A and B are disjoint.
					(2,5)		
		Showing Two Sets are Equal	To see if $A = B$, Show $A \subseteq B$ and B $\subseteq A$				
Null/ Empty Set	\emptyset , nothing. {}.	Equal					
{∅}	1 element						
Singleton set	One element.						
	By j24		Not published yet.		Sponsor	ed by Apollo	Pad com

By **j24** cheatography.com/j24/

Not published yet. Last updated 26th October, 2023. Page 3 of 4. Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

A Cheat Sheet by j24 via cheatography.com/195607/cs/41005/

Set Operation	s (cont)	Set Operation	Set Operations (cont) Set Operations (cont)		ions (cont)
principle of inclusion– exclusion A ∪ B = A + B - A ∩ B	ex) A = {1,2,3,4,5}, B = {4,5,6,7,8}. }A u B = A + B - A n B} = 5 + 5 - 2 = 8	Identity, , , , , , , , , absorbtion,	A ∩ U = A. A ∪ Ø = A.	countable	a set that either is finite or can be placed in one-to-one correspondence with the set of positive integers. To be countable, there must exist a 1-1 and onto (bijection) between the set and $\mathbb{N}!$ (i.e. $\mathbb{Z}+$) Let $f(x) = 2x$. Then f is a bijection from \mathbb{N} to \mathbb{E} since f is both one-to-one and onto. To show that it is one-to-one, suppose that $f(n) = f(m)$. Then $2 = 2m$, and so $n = m$. To see that it is onto, suppose that $f(n) = f(m)$ is an even positive integer. Then $f(n) = f(m)$ is an even positive integer $f(n) = f(m)$.
		domination	$A \cup U = U. A \cap \emptyset$ = \emptyset		
A - B,	A - B = A \cap B. $\{x \mid x \in A \land x \neq B\}$ Elements in A that are not in B. Ex) $\{1, 3, 5\} - \{1, 2, 3\} = \{5\}$. This is different from the difference of $\{1, 2, 3\}$ and $\{1, 3, 5\}$, which is the set $\{2\}$.	idempotent	$A \cup A = A$. $A \cap A$	t t s Ex) Show L that the is set of t	
difference of A and B		complemen- tation	$(A^{c)}c = A$		
		commut- ative	$A \cup B = B \cup A$. $A \cap B = B \cap A$		
		associative	$A \cup (B \cup C) = (A \cup B) \cup C$. $A \cap (B \cap C) = (A \cap B) \cap C$		
		distributive	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. A	even integers	
Complement of A, A^c	$\{x \in U \mid x \neq A\}$ Everything in the universe context thats not in A. Ex) $U = \{1,2,3,4\}$. $A = \{2\}$ B = $\{3\}$. $A^c = \{1,3,4\}$		$ \cap (B \cup C) = (A \cap B) \cup (A \cap C) $	E is countable	
		de morgans	$(A n b)^{c = A} c u$ $B^{c. (A \cup B)} c = A^{c n}$	set.	
		absorption	$A \cup (A \cap B) = A. A$ $\cap (A \cup B) = A.$		
$U = \mathbb{R} A = $ $\{x x \ge -1$ $\land x < 1\},$	$A \cup B = \{x \square$ $\square < 1 \lor x \ge$ $2\}. A \cap B =$	complement	$A \cup A^{c = U. A \cap A} c$ $= \emptyset.$		
$B = \{x \mid x < 0 \lor x \ge 2\}$	$\{x x < 0 \land \square$ $\square \ge -1\}. A^{\circ}c$ $= \{x x < -1 \lor x \ge 1\}.$				

By j24 cheatography.com/j24/

Not published yet. Last updated 26th October, 2023. Page 4 of 4. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com