

AP Bio - Metabolism Cheat Sheet

by isabellagates (isabellagates) via cheatography.com/68678/cs/17600/

Metabolism

Sum of all chemical reactions in living thing/system

Laws of Thermodynamics

- You can convert energy from one form to another (Ex. Carbohydrate is converted into ATP)
- No transfer energy is a 10% efficient process (Ex. Converting carbohydrate to ATP is only 64% efficient)

Entrophy

Measurement of randomness/disorder

Increase Increase order = energy entrophy increases Decrease Increase disorder = energy decreases entrophy

Gibb's Free Energy (G)

- Gives the potential of a system or a rxt tp do useful work
- -G = H (TS)
- H= Enthalpy (total energy)
- T = Temperature (in kelvin)
- S = Entropy
- When kelvin is 0, atoms do not move
- What the equation tells you:
- 1) Spontaneous system if G is negative, catabolic reaction (Ex. Cellular respiration)
- 2) Non-Spontaneous system if G is positive, anabolic reaction (Ex. Photosynthesis)

Negative GPositive GDecrease energyIncrease energy
Decrease energy Increase energy
Increase entropy Decrease entropy
Decrease temperature ature
Spontaneous Non-Spontaneous system System
Lose energy Convert energy

G (cont)

Catabolic reaction Anabolic reaction (Cellular respiration) (Photosynthesis)

Energy is released in ATP when a phosphate is broken off

Metabolic Reactions

Catabolism Exergonic reaction (energy is released or lost), breaks down organic compounds, example: glycolysis

Anabolism Endergonic reaction (energy is added), organic compounds are synthesized, example: photosynthesis

Oxidation Molecule loses an electron, H (Exergis formed

onic)

Reduction Molecule gains an electron (Ender-(H)

gonic)

Coupled An exergonic reaction Reaction provides the energy for an endergonic reaction

Electron NAD+/NADH, FADH+/FADH Carriers

Chemio-Movement of ions across a smosis semipermeable membrane, examples: ETC

Phosph-Adding a phosphate molecule orylation

Oxidative Happens in the ETC, phosphate is added to ADP Phosphorylation to form ATP Photop-Happens in photosynthesis,

hosphotyl-ATP is formed ation

Substrate Adds a phosphate, can still Phosphmake ATP, occurs in orylation glycolysis & krebs cycle

Cellular Respiration

Aerobic Needs oxygen, consists of: Respirglycolysis, krebs cycle, and the ation electron transport chain Anaerobic Oxygen is toxic, consists of: Respirglycolysis, fermentation (lactic ation acid + alcoholic) Glycolysis In cytosol, oldest process In matrix of mitochondria Krebs

Cycle

In cristae of mitochondria Electron Transport Chain

Glycolysis

Fermentation

Problems with Glycolysis

Pyruvate is Solved with krebs cycle Toxic and/or fermentation

By isabellagates (isabellagates)

Published 25th October, 2018. Last updated 25th October, 2018. Page 1 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

AP Bio - Metabolism Cheat Sheet

by isabellagates (isabellagates) via cheatography.com/68678/cs/17600/

Problems with Glycolysis (cont)

NAD+ is Lack of NAD+ = process is not in Short complete, solution is fermen-Supply tation and/or the ETC

Cost Analysis of Glycolysis

Overall Gains	Net Gains
4 ATP	2 ATP
2 NADH	2 NADH (= 4 ATP)

Krebs Cycle

Purpose	Get rid of pyruvate from
	alvcolvsis

Rules

- For every carbon to carbon bond that is broken, carbon dioxide is released and NADH is reduced
- 2) For any rearrangement of the carbon chain molecule, the substrate order is as follows: NADH -> ATP -> FADH -> NADH

Krebs Cycle

Net Gains

Glycolysis	Krebs Cycle	
2 ATP	2 ATP	
2 NADH	8 NADH	
	2 FADH	

Electron Transport Chain

Gains from 1 Glucose

Process	Net Gains	Net Gains in ATP
Glycolysis	2 ATP	2 ATP
	2 NADH	4 ATP
Krebs	2 ATP	2 ATP
	8 NADH	24 ATP
	2 FADH	4 ATP
Total		36 ATP

Photosynthesis

- In chloroplast
- Anabolism (Small molecules become big), endergonic reaction (energy is added)
- Process of using light to split water, which provides ATP and NADH to fix carbon dioxide to 5 carbon RuBP to make 3 PGA (Phosoglyceral Aldehyde)

Two Reactions

Light Rxt	Occurs in thylakoid (individual
	pancakes of the chloroplast),
	needs water & sunlight, proces
	ATP and NADH
Dark	In the stroma, needs ATP,
Rxt/Calvin	NADH, and water, produces 3
Cycle	BOA (B)
Cyclc	PGA (Phosoglyceral

Reactions

Reaction	Reactants	Products	Location
Light	Light,	Energy,	Thylakoid
Reaction	water,	oxygen,	
	ADP,	hydrogen,	
	NADP+	ATP,	
		NADPH	
Dark	Carbon	3 PGA,	Stroma
Reaction,	dioxide,	ADP,	
Calvin	ATP,	NADP+	
Cycle,	NADPH		
C2			

Light Reaction

Calvin Cycle

Photorespiration

- Peroxisomes & mitochondria rearrange and split a two carbon compound from the chlorpolast to release carbon dioxide
- Uses ATP

C4 Pathway

- In grassplants
- Occurs in mesophyll cells above the bundle sheath cells lining vascular tissues
- Photorespiration: Oxygen is added, causes carbon dioxide to be released to the bundle sheath, needs PEP (Phosphoenolpyruvate Acid)

Vascular Tissue

C4 Pathway

Cost Analysis

C3	18 ATP, 12 NADH
C4	a lot of ATP
CAM	6-8 more ATP

cheatography.com/isabellagates/

Published 25th October, 2018. Last updated 25th October, 2018. Page 2 of 3. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com