Cheatography

AP Bio - Metabolism Cheat Sheet by isabellagates (isabellagates) via cheatography.com/68678/cs/17600/

Metabolism

Sum of all chemical reactions ina living thing/system

Laws of Thermodynamics

- #1 You can convert energy from one form to another (Ex. Carbohydrate is converted into ATP)
- #2 No transfer energy is a 10% efficient process (Ex. Converting carbohydrate to ATP is only 64% efficient)

Entrophy

Measurement of randomness/disorder		
Increase	Increase order = energy	
entrophy	increases	
Decrease	Increase disorder = energy	
entrophy	decreases	

Gibb's Free Energy (G)

- Gives the potential of a system or a rxt tp do useful work
- G = H (TS)
- H= Enthalpy (total energy)
- T = Temperature (in kelvin)
- S = Entropy
- When kelvin is 0, atoms do not move
- What the equation tells you:

1) Spontaneous system if G is negative,

catabolic reaction (Ex. Cellular respiration)

2) Non-Spontaneous system if G is positive, anabolic reaction (Ex. Photosynthesis)

By **isabellagates** (isabellagates) cheatography.com/isabellagates/

G **Negative G Positive G** Decrease energy Increase energy Increase entropy Decrease entropy Decrease temperature Increase temperature Spontaneous system Non-Spontaneous System Convert energy Lose energy Catabolic reaction Anabolic reaction (Cellular respiration) (Photosynthesis)

ΑΤΡ

Energy is released in ATP when a phosphate is broken off

Metabolic Reactions Catabolism Exergonic reaction (energy is released or lost), breaks down organic compounds, example: glycolysis Anabolism Endergonic reaction (energy is added), organic compounds are synthesized, example: photosynthesis Oxidation Molecule loses an electron, H is formed (Exergonic) Molecule gains an electron (H) Reduction (Endergoni c) Coupled An exergonic reaction provides Reaction the energy for an endergonic reaction

Published 25th October, 2018. Last updated 25th October, 2018. Page 1 of 3.

Metabolic Reactions (cont)

Electron Carriers	NAD+/NADH, FADH+/FADH
Chemiosm osis	Movement of ions across a semipermeable membrane, examples: ETC
Phosphoryl ation	Adding a phosphate molecule
Oxidative Phosphoryl ation	Happens in the ETC, phosphate is added to ADP to form ATP
Photophosp hotylation	Happens in photosynthesis, ATP is formed
Substrate Phosphoryl ation	Adds a phosphate, can still make ATP, occurs in glycolysis & krebs cycle

Cellular Respiration

Aerobic Respiratio n	Needs oxygen, consists of: glycolysis, krebs cycle, and the electron transport chain
Anaerobic Respiratio n	Oxygen is toxic, consists of: glycolysis, fermentation (lactic acid + alcoholic)
Glycolysis	In cytosol, oldest process
Krebs Cycle	In matrix of mitochondria
Electron Transport Chain	In cristae of mitochondria

Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

AP Bio - Metabolism Cheat Sheet by isabellagates (isabellagates) via cheatography.com/68678/cs/17600/

Fermentation

Problems	with	Glycolysis	

Pyruvate	Solved with krebs cycle and/or
is Toxic	fermentation
NAD+ is	Lack of NAD+ = process is not
in Short	complete, solution is fermentation
Supply	and/or the ETC

Cost Analysis of Glycolysis		
Overall Gains	Net Gains	
4 ATP	2 ATP	
2 NADH	2 NADH (= 4 ATP)	

Krebs Cycle

Purpose Get rid of pyruvate from glycolysis

Rules

1) For every carbon to carbon bond that is broken, carbon dioxide is released and NADH is reduced

2) For any rearrangement of the carbon chain molecule, the substrate order is as follows: NADH -> ATP -> FADH -> NADH

Net Gains	
Glycolysis	Krebs Cycle
2 ATP	2 ATP
2 NADH	8 NADH
	2 FADH

Electron Transport Chain

Gains from 1 Glucose		
Process	Net Gains	Net Gains in ATP
Glycolysis	2 ATP	2 ATP
	2 NADH	4 ATP
Krebs	2 ATP	2 ATP
	8 NADH	24 ATP
	2 FADH	4 ATP
Total		36 ATP

Photosynthesis

- In chloroplast

Anabolism (Small molecules become big), endergonic reaction (energy is added)
Process of using light to split water, which provides ATP and NADH to fix carbon dioxide to 5 carbon RuBP to make 3 PGA (Phosoglyceral Aldehyde)

Two Reactions	
Light Rxt	Occurs in thylakoid (individual pancakes of the chloroplast), needs water & sunlight, proces ATP and NADH
Dark Rxt/Calvin Cycle	In the stroma, needs ATP, NADH, and water, produces 3 PGA (Phosoglyceral Aldehyde)

Reactions			
Reaction	Reactan ts	Products	Location
Light Reaction	Light, water, ADP, NADP+	Energy, oxygen, hydrogen, ATP, NADPH	Thylakoid
Dark Reaction, Calvin Cycle, C3	Carbon dioxide, ATP, NADPH	3 PGA, ADP, NADP+	Stroma

Light Reaction

Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

By **isabellagates** (isabellagates) cheatography.com/isabellagates/

Published 25th October, 2018. Last updated 25th October, 2018. Page 2 of 3.

Photorespiration

 Peroxisomes & mitochondria rearrange and split a two carbon compound from the chlorpolast to release carbon dioxide
 Uses ATP

C4 Pathway

- In grassplants
- Occurs in mesophyll cells above the bundle sheath cells lining vascular tissues

- Photorespiration: Oxygen is added, causes carbon dioxide to be released to the bundle sheath, needs PEP (Phosphoenolpyruvate Acid)

Cost Analysis	
C3	18 ATP, 12 NADH
C4	a lot of ATP
CAM	6-8 more ATP

By **isabellagates** (isabellagates) cheatography.com/isabellagates/

Published 25th October, 2018. Last updated 25th October, 2018. Page 3 of 3. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com