
PyIPSA Cheat Sheet
by ipsa_power via cheatography.com/159139/cs/33570/

About PyIPSAAbout PyIPSA

PyIPSA is the scripting application programming interface (API) designed to give engineers with comfortability in Python the chance to build
more sophisticated network models. The entire code is built on the principles of object oriented programming, courtesy of our very accessible
and powerful PyBind wrapper. The cheat sheet below gives scripters a solid foundation to start their IPSA experiences and give their computers
more automated control over network design and functionality.

Starting PyIPSAStarting PyIPSA

Starting PyIPSA is as easy as making an interface and uploading the
network from there, within a Python console or script

Running Python within IPSARunning Python within IPSA Running from console /IDERunning from console /IDE

import ipsa
isci =
ipsa.GetScriptInterface()
inet = isci.GetNetw‐
ork()

import ipsa
isci =
ipsa.IscInterface()
fname =
"some_network.i2f"
inet = isci.ReadFil‐
e(fname)

This is the first level of building a network within IPSA. From this
step, you can use the full API functions to modify the network and
run many study types.

Creating a NetworkCreating a Network

Building a network from scratch can seem daunting but this is done
in a similar way to the IPSA UI.
First you designate any busbars that you need and build it up from
there

new_net = isci.CreateNewNetwork(100,50,
True, True, 0 0)
buses = [None] * 5
branches = []
for i in range(5):
 bus[i]=new_net.CreateBusbar("Bus "+str(i))
bid=0
for sid in [bus.GetUid() for bus in buses]:
 for rid in [bus.GetUID() in buses != sid]:
 branches[bid]=new_net.CreateBranch(sid, rid,
str(bid))
 bid+=1

TipTip: It's a good rule of thumb to make all the busbars first and then
build from there

Accessing Line InformationAccessing Line Information

List of Components in PyIPSAList of Components in PyIPSA

Users can script all our IPSA components within their PyIPSA
networks

NameName Python CodePython Code

Busbar IscBusbar

Branch IscBranch

Two Winding Transformer IscTransformer

Three Winding Transformer Isc3WTransformer

Load IscLoad

Induction Motor IscIndMachine

Synchronous Generator IscSynMachine

Grid Infeed IscGridInfeed

Harmonic Source IscHarmonic

Universal Machine IscUMachine

For more components in IPSA check out our
PyIPSA ReadTheDocs

Redrawing Networks in PythonRedrawing Networks in Python

The IPSA UI allows you to graphically modify your drawn networks
but PyIPSA gives you the chance to automate this

idgr, ix = inet.GetAllDiagrams(),1
for nUid in [bus.GetUID() for bus in buses]:
 idgr[0].DrawBusbarCircular(nUid,20,ix,ix)
 ix += 1
 idgr[0].DrawUndrawnItemsAttachedToBusbar(nUid)

Components and Access FunctionsComponents and Access Functions

http://www.cheatography.com/
http://www.cheatography.com/ipsa-power/
http://www.cheatography.com/ipsa-power/cheat-sheets/pyipsa
https://ipsa.readthedocs.io

Two-winding transformers in IPSA are branches with tap-changers
mounted ontop. In this case, you need to edit the specific branch
information with unique functions such as GetILineValue.

tf_maxtap =
tx.GetDValue(ipsa.IscTransformer.MaxTapPC)
tf_resistance = tx.GetLineDValue(ipsa.IscBr‐
anch.Resistance)

For example, while the tap variables are targeted using IscTra‐
nsformer, the impedance values are targeted using IscBranch.

Note that the same applies for the Set functions above as well

Every component in IPSA has an associated class which can be
added, modified or destroyed from your network. These all share the
same access functions that require the user to input a particular field
value reference (which the code takes as an integer).

bus1 = inet.GetBusbar(1)
bus1_voltage = bus1.GetDValue(ipsa.IscBusb‐
ar.NomVoltkV)

This also works for strings, integers and booleans:

b1_name = bus1.GetSValue(ipsa.IscBusbar.Name)
b1_ctrl = bus1.GetIValue(ipsa.IscBusbar.C‐
ontrolType)

Plus we can set values in a similar way:

bus_volt = 33.
bus1.SetDValue(ipsa.IscBusbar.NomVoltkV,bus_volt)

Tip:Tip: You can also access all the network elements using dictionaries
and the iNet.GetBusbars() syntax, where the keys are the
element names!

By ipsa_poweripsa_power
cheatography.com/ipsa-
power/

Not published yet.
Last updated 30th August, 2022.
Page 2 of 3.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/ipsa-power/
http://crosswordcheats.com

PyIPSA Cheat Sheet
by ipsa_power via cheatography.com/159139/cs/33570/

Running an Analysis StudyRunning an Analysis Study

The core principle of IPSA is to run analysis modules such as load
flow and fault level in order to evaluate network feasibility and
capacity (among many other functions). Once you have built your
network, you can specify the run settings in the IscAnalysisLF
class and run the DoLoadFlow() function as shown below.

lfset = inet.GetAnalysisLF()
lfset.SetIValue(ipsa.IscAnalysisLF.LockTaps) = 1
To use minimum resistance value in multi-‐
section lines
lfset.SetIValue(ipsa.IscAnalysis.WhichImpedance = 1
inet.DoLoadFlow()

Important:Important: This is slightly more complicated for a harmonics or fault
analysis. For example, in a harmonic analysis, you have to specify
each of the impedance coefficients for lines, transformers etc and
also all the specific variables within each of the components.

Computing Load ProfilesComputing Load Profiles

To run a series of load flow scenarios designed for generators and
loads you need to build the scenario set first using dictionaries

cats = {0:'PF1', 1:'PF2', 2:'PF3'}
apower = {0:0.8, 1:0.775, 2:0.75}
rpower = {0:0.48, 1:0.465, 2:0.45}

Then we build a profile instance defined by the class IscLoadPr‐
ofilePQActual using the IscNetwork function

profUID = inet.CreateLoadProfilePQActual('test')
prof = inet.GetLoadProfilePQActual('test')
prof.SetCategoryNames(cats}
prof.SetPMW(apower)
prof.SetQMVAr(rpower)

Finally you just have to attach this profile to the load in question

load =
ipsa_net.CreateLoad(send.GetUID(),rec.GetUID)
load.SetIValue(ipsa.IscLoad.ProfileUID,profUID)

To run this correctly, make sure that you have
ProfileUse = 1 and iterate through the ProfileLoadC‐
ategory value that refers to the strings declared in
IscLoadProfilePQActual.SetCategory

Finishing TouchesFinishing Touches

When you have finished working on your network, don't forget to use
the functions to save the file you've been working on. Otherwise you
will lose your progress:

inet.WriteFile("C:\Documents\new_network.i2f
bClosedOK = isci.CloseNetwork()

Note: Try not to open, run or save any IPSA networks if you have
them open in the IPSA UI program as well. PyIPSA can only open a
file once at a time, same way as the IPSA UI will.

Additional PackagesAdditional Packages

When using PyIPSA you might find that some additional packages
make analysis easier:

numpy scipy opencv

pandas matplotlib seaborn

openpyxl numba setuptools

There are many more useful libraries but these are the ones that we
know users utilise with PyIPSA

By ipsa_poweripsa_power
cheatography.com/ipsa-
power/

Not published yet.
Last updated 30th August, 2022.
Page 3 of 3.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/ipsa-power/
http://www.cheatography.com/ipsa-power/cheat-sheets/pyipsa
http://www.cheatography.com/ipsa-power/
http://crosswordcheats.com

	PyIPSA Cheat Sheet - Page 1
	About PyIPSA
	Starting PyIPSA
	List of Components in PyIPSA
	Creating a Network
	Redrawing Networks in Python
	Components and Access Functions
	Accessing Line Information

	PyIPSA Cheat Sheet - Page 3
	Running an Analysis Study
	Finishing Touches
	Additional Packages
	Computing Load Profiles

