Cheatography

Enzymes Cheat Sheet by iplorip via cheatography.com/45365/cs/13354/

Lactate dehydrogenase

lactate + NAD+ --> pyruvate + NADH + H+ tetrameric H-form: aerobic , heart L-->P M-form: anaerobic , muscle/liver P-->L Reagents: Lactate, NAD+, Oxidized PMS, Oxidized NBT Specific Activity stain LDH-1: pyruvate inhibition LDH-1/2: 2-hydroxybutyrate as S LDH-4/5: greater heat stability

Creatine + ATP <--> creatine phosphate + ADP + H+ Dimeric Cardiac: MM+ MB (Myocardial infarction) Skeletal: MM Brain: BB

Aspartic protease Cleave single peptide bond, release acidic C-terminal peptide Ca induced aggregation of modified casein micelle--> precipitate as curd

Affinity label

Specific & Irreversible inhibitor Specificity group & reactive group resembles substrate TPCK on His-57 of Chymotrypsin

By iplorip

cheatography.com/iplorip/

NAD+ : absorbance change at 340nm FAD: absorbance change at 440 nm X

Deter

- Follow INITIAL rate, rate drops
- 1. substrate depletion
- 2. reverse reaction
- 3. product inhibition
- 4. enzyme stability

Differentiation of Mechanisms

• primary plot (single vs. double displacement)

- isotope exchange (single vs. double)
- · product inhibition studies (specific type)

Homeostatsis(regulation)

- 1. [S] control, M-M vs Cooperativity
- 2. Allosteric effect
- 3. [S]cycle, 2-way, 6-Phosphofructokinase &
- Fructose bisphosphatase
- 4. Zymogen activation
- 5. Covalent modification
- (phosphorylation,adenylylation,myristoylation,AD P-

ribosylation, methylation, acetylation, ubiquitination)

- 6. Enzyme cascade
- 7. Cascade amp
- 8. Enzyme induction/degradation

Published 31st October, 2017.

Last updated 31st October, 2017. Page 1 of 3.

Modification of amino acids

Active site residues more susceptible Ser-195 on chymotrypsin by DIPF -->Activity Modify 1st with [S]/[I] to protect active site, then modify again in absence ADH inactivated by iodoacetate more than iodoacetamide 2AA involved: pKa >2 units apart:Good Close--> tVmax never achieved

Lite Beer

Barley: a-amylase cannot break down a-1,6 bond + dextrin --> Yeast Glucoamylase from Aspergillus niger: break α-1,6 bond, less dextrin

Thermolysin

L-phenylalanine + N-protected L-aspartate N: benzyloxycarbonyl

- 1. Strain/Distortion: entropy reduction
- 2. Acid-Base : carbonic anhydrase
- 3. Covalent catalysis: serine protease
- 4. Lower Ea: Zn&Arg127 in carboxypeptidase A stabilize TS

Histidine can be both e- donor/acceptor

TS analogue: pyrrole-2-carboxylate on

proline racemase as inhibitor

Abzyme: mimic Ferrochelatase

Sponsored by Readability-Score.com

Measure your website readability! https://readability-score.com

Cheatography

Enzymes Cheat Sheet by iplorip via cheatography.com/45365/cs/13354/

Ribozyme

RNA less versatile (4 building blocks AUCG) unable to form large non-polar region nucleic acid preferred as substrate RNA susceptible to hydrolysis

Organic Cofactors

Organic Cofactors

Coenzyme	Examples of chemical groups tra	nsferred	Dietary precursor in mammals
Biocytin	CO ₂		Biotin Vitamin B7
Coenzyme A	Acyl groups	Vit B ₅	Pantothenic acid and other compounds
5'-Deoxyadenosylcobalamin (coenzyme B ₁₂)	H atoms and alkyl groups		Vitamin B ₁₂
Flavin adenine dinucleotide	Electrons		Riboflavin (vitamin B ₂)
Lipoate	Electrons and acyl groups		Not required in diet
Nicotinamide adenine dinucleotide	Hydride ion (:H ⁻)		Nicotinic acid (niacin) Vit B ₃
Pyridoxal phosphate	Amino groups		Pyridoxine (vitamin B ₆)
Tetrahydrofolate	One-carbon groups		Folate Vit B ₉
Thiamine pyrophosphate	Aldehydes		Thiamine (vitamin B,)

Catalytic cofactor: e.g. TPP/FAD Stoichiometric cofactor: cosubstrate

Radioisotope

Glutamate decarboxylase CO2 : trap gas in alkali Monoamine oxidase R-CHO:extracted by ether after acidification (acidified R-NH2 will remain in aq phase) Cholinesterase COOH: ion exchange, importance of **label**

position

By **iplorip**

cheatography.com/iplorip/

Scintillation Proximity Assay

Radioligand stimulate bead to emit light, when in **close proximity**

High affinity capture system: biotinylated substrate & streptavidin-coated beads NO separation needed. S or P bind to bead

Competitive inhibitor

Same site, mutually exclusive Vmax unchanged Km increased

Non-competitive inhibitor

Determination of Inhibitor Constant

ESI present, Km unchanged, Vmax decrease, equal Ki,same % inhib.

Pre-steady state kinetics

E+S--> ES(flurorescence) Stopped flow technique, follow time course of fluorescence change

Irreversible inhibitor

Diisopropyl phosphofluoridate (**DIPF**) modifies *serine* on AchE

Hill Coefficient

Important: Choice of [S] Cooperativity: Same **site**&**ligand**

Chymotrypsin

Active site Ser195, His57& Asp102 form
charge relay system> high reactivity of
Ser195
Selective for carboxyl side of aromatic or large
hydrophobic residue(Met)
Biphasic kinetics:
1. Burst phase: covalent complex
2. SS Phase: hydrolysis+ recovery
Double displacement, p-nitrophenolate

Published 31st October, 2017. Last updated 31st October, 2017. Page 2 of 3. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

Apoenzyme	inactive form	1	
Cofactor	non-protein		
Holoenzyme	active		
Metalloenzy me	participate in reaction(le wis acid)	Zn in carbonic anhydrase	
Metalloenzy me	stabilize transition state	Zn in carboxypeptidase A	
Metal activated enzyme	maintain active conformati on	K+ in pyruvate kinase	
Metal activated enzyme	form substrate complex bridge	Mg in kinase	
Prosthetic group	tightly bound	NH2 on pyridoxal phosphate of aspartate transaminase	
Coenzyme	loosly bound	I	
Cosubstrate(coenzyme)	convert to product after Rx	NAD+	

Coenzyme analogue as drug

Drug	Analogue of	enzyme inhibited	MOA & Use
Sulfon amide	PABA	dihydropte roate synthase	folic acid synthesis,Ab x
Methot rexate	Folate	dihydrofol ate reductase	THF synthesis,chil dhood leukemia

Plot

Enzymes Cheat Sheet

by iplorip via cheatography.com/45365/cs/13354/

Uncompetitive inhib.

S binding to E--> expose site for I binding both Km Vmax decrease to same extent, ESI present, same slope

Nixed inhibition

Binding affinity(Ki) not the same Vmax decrease, Km can in/decrease

Suicide substrate

P irreversibly bind to E
Deprenyl on MAO on Flavin prosthetic group

Substrate inhibition

High [S] favour ESS(nonproductive binding) e.g. succinate dehydrogenase (select points for drawing)

Single displacement Rx Random sequential creatine kinase

Compulsory order	ADH(NAD+ bind 1st)
Ternary complex pres	sent

Double displacement Rx (Ping-Pong)

aspartate transaminase aspartate+ α-ketoglutarate -->oxaloacetate+ glutamate (NH2 displaced)

Isotope exchange

Occurs only in double displacement; exception: maltose phosphorylase isotope from 1st P back to 1st S in absence of 2nd S e.g. sucrose phosphorylase Glu-Fru + Fru* <--> Glu-Fru* + Fru

Diff. subunits of multimeric enzyme

Catalytic & Regulatory	Aspartate transcarbamoylas e(ATCase)	ATP&CTP
2 nd unit modify specificity	Lactose synthase	α- lactalbumin
2 diff. cat. units	tryptophan synthase(α2β2)	Tunnel connect active sites

Lysozyme

hydrolyze glycosidic bond bet C-1 of NAM and C-4 of NAG, **Non-identical site** Site of cleavagea: bet D&E, distorted Ring D Glu-35 as acid, H⁺ to O of glycosidic bond Carbonium cation stabilized by 1. -ve charge on Asp-52 2. half-chair formation of sugar D (strain) (resonance stabilize +charge on C-1 with O)

Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

By iplorip

cheatography.com/iplorip/

Published 31st October, 2017. Last updated 31st October, 2017. Page 3 of 3.