
C File Handling Cheat Sheet
by Interesting via cheatography.com/202766/cs/43061/

File FunctionsFile Functions

int fscanf(FILE stream, const char
format, ...)

reads formatted input from a stream.

int fprintf(FILE stream, const char format,
...)

sends formatted output to a stream.

FILE fopen(const char filename, const
char *mode)

opens the filename pointed to, by filename using the given mode.
"r" Opens a file for reading. The file must exist.
"w" Creates an empty file for writing. If a file with the same name already exists, its content is erased
and the file is considered as a new empty file.
"a" Appends to a file. Writing operations, append data at the end of the file. The file is created if it
does not exist.

int fseek(FILE *f, long int offset, int
origin)

go forward offset times without reading the files
origins:
SEEK_SET - from start of file
SEEK_END - end of file
SEEK_CUR - move from current location

int ftell(FILE *f) returns the distance from cursor to start of file

void rewind(FILE *f) go back to start of file

int ferror(FILE *F) returns 0 if no errors occured

fclose(FILE* F) closes the file

size_t fread(void ptr, size_t size, size_t
nmemb, FILE stream)

reads data from the given stream into the array pointed to, by ptr.

int fgetc(FILE *stream) Gets the next character (an unsigned char) from the specified stream and advances the position
indicator for the stream.

char fgets(char str, int n, FILE *stream) read line to str. stop when newline or eof is read

int fputc(int char, FILE *stream) Writes a character specified by the argument char to the specified stream and advances the position
indicator for the stream.

int fputs(const char str, FILE stream) Writes a string to the specified stream up to but not including the null character.

Reading and writing binary filesReading and writing binary files Reading file into struct (cont)Reading file into struct (cont)

> people = realloc(people, sizeof(pe‐
rson)(++age)size);
 strcpy((people+size-1)->name, name);
 (people+size-1)->age = age;
 }
 fclose(f);
}

assume people.txt is formatted like this:
name1 age
name2 age

Writing to fileWriting to file

http://www.cheatography.com/
http://www.cheatography.com/interesting/
http://www.cheatography.com/interesting/cheat-sheets/c-file-handling

#include <stdio.h>
#define SIZE 20
struct Person{
char name[SIZE];
long id;
float age;
} typedef person_t;
void main(){
person_t p1={"momo", 1111,
23.5}, p2 = {"gogo", 2222,
24.8}, p3, p4;
FILE* f = fopen("persons.b‐
in", "wb");
fwrite(&p1, sizeof(perso‐
n_t), 1, f);
fwrite(&p2, sizeof(perso‐
n_t), 1, f);
fclose(f);
f = fopen("persons.bin",
"rb");
fread(&p3, sizeof(person_t),
1, f);
fread(&p4, sizeof(person_t),
1, f);
fclose(f);
printf("p3: name: %s\t id:
%ld\t age: %.2f\n", p3.name,
p3.id, p3.age);
printf("p4: name: %s\t id:
%ld\t age: %.2f\n", p4.name,
p4.id, p4.age);
}

Reading file into structReading file into struct

typedef struct person {
 char name[20];
 int age;
} person;
int main() {
 person *people = NULL;
 char name[20];
 int size, age = 0;
 FILE *f = fopen("peo‐
ple.txt", "r");
 while (!feof(f)){
 scanf("%s %d",
name, &age);

#include <stdio.h>
void main()
{
FILE* f = fopen("myFile.tx‐
t", "w");
int res;
if (f == NULL){
printf("Failed opening the
file. Exiting!\n");
return;
}
fputs("Hello World!\n", f);
fclose(f);
f = fopen("myFile.txt", "‐
a");
fputs("And Good Morning!\n",
f);
fclose(f);
}

By InterestingInteresting
cheatography.com/interesting/

Not published yet.
Last updated 16th April, 2024.
Page 2 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/interesting/
https://readable.com

	C File Handling Cheat Sheet - Page 1
	File Functions
	Reading and writing binary files
	Writing to file
	Reading file into struct

