## RUBRICK



## ANSWERS BELOW

## QUESTION 1



## QUESTION 4

Andy is driving his normal route to work on a straight highway when he comes across a road closure. He decides to measure some information about this detour route. He first travels 200 m at a bearing of 030 o. He then slightly changes course and heads on a bearing of 010 o for 150 m . Finally, he changes course to a bearing of 330 o for another 252 m . This puts him back onto the straight highway he started on.
Calculate how much longer the detour is.

ANSWER-2-1

| When viewed from the side in 2D, our cone looks like an isosceles triangle. If we draw a line down the centre of the cone, we split our isosceles triangle into two right angled triangles. <br> To find the radius of the top of the cone, all we need to do is find the opposite side of one of these triangles, using our new angle of $15^{\circ}$, obtained by halving the original angle. $\begin{aligned} \sin (\theta) & =\frac{O}{H} \\ H \times \sin (\theta) & =O \\ O & =H \times \sin (\theta) \\ O & =11.5 \times \sin \left(11^{\circ}\right) \\ \cdots & =2.976419 \ldots \end{aligned}$ |
| :---: |
|  |  |
|  |  |

ANSWER-4-1

## ANSWER-5-1



## THANK YOU

Thank You:D


## QUESTION 5

| ANSWER - 4 - 2 |
| :--- |
| Moving on to the second triangle, for the second part of the detour: |
| $\qquad$$\cos (\theta)$ $=\frac{A}{H}$ <br> $H \times \cos (\theta)$ $=A$ <br> $A$ $=150 \times \cos \left(10^{\circ}\right)$ <br> $\cdots$ $=147.22163 \ldots$ <br> $10^{\circ} \ldots$  |

## ANSWER-5-2

We know the height of the wickets, but we do not know what height the ball will be at when it reaches


Therefore, we need to solve for the vertical side of this triangle, which will give us the height of the ball as it passes the wickets, thus determining whether they collide or not. However, we still need one
more side length to be able to solve for this. We know the overall length of the pitch, so if we can work out the horizontal side of one of the triangles in the first diagram, we can work out both.


The triangle on the bower's side contains known angles, and a known side length (the adiacent side). Let's calculate the horizontal side of this triangle (let's call it $x$ ) using $9^{\circ}$ as our angle of reference. making the horizontal side the ajjacent side:
$\tan (\theta)=\frac{O}{A}$
$A=\frac{O}{\tan (\theta)}$
$x=\frac{O}{\tan (\theta)}$
$=\frac{2.41}{\tan \left(9^{9}\right)}$
$=15.216141$
$\approx 15.22 \mathrm{~m}$

## QUESTION 3

An airplane departs A and flies on a $143^{\circ}$ course for 368 km to B . It then changes directions to a $233^{\circ}$ course and flies a further 472 km to C .
Find:

1) the distance of $C$ from $A$
2) the bearing of $C$ from $A$

## ANSWER-1

| In order to find how much longer the detour route is, we must calculate the length of both routes. |
| :---: |
| First lets calcuiate the length of the detour route: |
| $\begin{aligned} L_{\text {detoor }} & =200+150+252 \\ & =602 \mathrm{~m} \end{aligned}$ |
| Now, let's calculate the length of the original route using each of the 3 triangles formed by the detour route. For each of these triangles we want to find the vertical side; that is, the one that points in the same direction as the highway route. Adding up the vertical sides from each of the 3 triangles will give us the length of the highway route. |
| Starting with the first triangle, for the first part of the detour: |
|  |
| $\begin{aligned} \cos (\theta) & =\frac{A}{H} \\ H \times \cos (\theta) & =A \end{aligned}$ |
| $A=200 \times \cos \left(30^{\circ}\right)$ |

## By inkirbythesecond

For P.E. class, Josh is studying his bowling technique in cricket. He finds that he releases the ball just after the apex of his arm rotation, causing the ball to travel at an angle of $81^{\circ}$ from the vertical. Josh also measures the height that his arm reaches at this release point, getting a value of 2.41 m . He knows the distance from the bowling crease to the wicket is 18.9 m , and the wickets are 71.1 cm tall. Assume that the ball travels fast enough that the trajectory is a straight line, and that the ball will bounce off the pitch at the same angle it came from. Calculate the height of the ball will bounce to at the wickets and hence determine whether the ball will hit them.

## ANSWER-2-2



Published 23rd March, 2023.
Last updated 23rd March, 2023.
Page 2 of 3.


Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com


ANSWER-4-3
$\qquad$

$\cos (\theta)=\frac{A}{H}$ $\begin{aligned} H \times \cos (\theta) & =A \\ A & =252 \times \cos \left(30^{\circ}\right)\end{aligned}$ $\begin{aligned} A & =252 \times \cos \left(30^{\circ}\right. \\ \cdots & =218.238402 \ldots\end{aligned}$
$\qquad$
$L_{\text {Lidghay }}=173.205081 \ldots+147.721163 \ldots+218.238402$.
$=539.164645$.
To calculate the extra distance travelled by taxing the detour. we simply yst take the difference between $L_{\text {deteour }}$ and $L_{\text {nighaway }}$
$L_{\text {detrour }}-L_{\text {hididway }}=602-539.164645 . \mathrm{F}$
$=62.835355$
$\approx 63 \mathrm{~m}$
Therefore, the extra distance Andy travelled by taking the detour was 63 m , rounded to the nearest whole numbe

## ANSWER - 5-3


$\qquad$
side):
$\tan (\theta)=\frac{O}{A}$
$O=A \times \tan (\theta)$
" $=3.68 \times \tan (9)$
$=0.582855$
$\approx 0.58 \mathrm{~m}$
This is less than wicket height of 0.71 m , therefore, the ball hits the wicket.


By inkirbythesecond
cheatography.com/inkirbythesecond/

## Published 23rd March, 2023.

Last updated 23rd March, 2023.
Page 3 of 3 .

## Sponsored by ApolloPad.com

Everyone has a novel in them. Finish

## Yours!

https://apollopad.com

