
Python Software Engineering Best Practices Cheat Sheet
by Ilyes KAANICH (ilyes64) via cheatography.com/124061/cs/23651/

Clean and Modular Code

Production Code

software running on production servers to handle live users and
data of the intended audience.

Production Quality Code

code that meets expect ations in reli abi lity, effici ency, etc., for
produc tion.

Clean Code

readable, simple, and concise.

Modular Code

logically broken up into functions and modules.

Module

a file. Modules allow code to be reused by encaps ulating them
into files that can be imported into other files.

Making your code Modular makes it easier to

 Reuse your code
 Write less code
 Read your code
 Collaborate on code

Refact oring Code

rest ruc turing your code to improve its internal structure,
without changing its external functi ona lity. This gives you a
chance to clean and modularize your program after you've got it
workin g.p rogram after you've got it working.

Writing Clean Code: Meaningful Names

Be descri ptive and imply type

E.g. for booleans, you can prefix with is_ or has_ to make it
clear it is a condition. You can also use part of speech to imply
types, like verbs for functions and nouns for variables.

Be consistent but clearly differ entiate

E.g. age_list and age is easier to differ entiate than ages and
age.

Avoid abbrev iations and especially single letters

(Excep tion: counters and common math variables) Choosing
when these exceptions can be made can be determined based on
the audience for your code. If you work with other data scient ists,
certain variables may be common knowledge. While if you work
with full stack engineers, it might be necessary to provide more
descri ptive names in these cases as well.

Writing Clean Code: Meaningful Names (cont)

Long names != descri ptive names

You should be descri ptive, but only with relevant inform ation. E.g.
good functions names describe what they do well without
including details about implem ent ation or highly specific uses.

Try testing how effective your names are by asking a fellow
programmer to guess the purpose of a function or variable based on
its name, without looking at your code. Coming up with meaningful
names often requires effort to get right.

Writing Clean Code: Nice Whitespace

Organize your code with consistent indent ation

the standard is to use 4 spaces for each indent. You can make
this a default in your text editor.

Separate sections with blank lines to keep your code well organized
and readable.

Try to limit your lines to around 79 charac ters, which is the guideline
given in the PEP 8 style guide.

In many good text editors, there is a setting to display a subtle line
that indicates where the 79 character limit is.

For more guidel ines, check out the code layout section of PEP 8

Writing Modular Code

DRY (Don't Repeat Yourself)

Don't repeat yourself! Modula riz ation allows you to reuse parts of
your code. Generalize and consol idate repeated code in functions
or loops.

Abstract out logic to improve readab ility

Abstra cting out code into a function not only makes it less repeti ‐
tive, but also improves readab ility with descri ptive function
names. Although your code can become more readable when you
abstract out logic into functions, it is possible to over-e ngineer this
and have way too many modules, so use your judgement.

Minimize the number of entities (funct ions, classes, modules, etc.)

There are tradeoffs to having function calls instead of inline logic.
If you have broken up your code into an unnece ssary amount of
functions and modules, you'll have to jump around everywhere if
you want to view the implem ent ation details for something that
may be too small to be worth it. Creating more modules doesn't
necess arily result in effective modula riz ation.

By Ilyes KAANICH (ilyes64)
cheatography.com/ilyes64/
www.linkedin.com/in/ilyes-
kaanich/

Published 11th August, 2020.
Last updated 11th August, 2020.
Page 1 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/ilyes64/
http://www.cheatography.com/ilyes64/cheat-sheets/python-software-engineering-best-practices
https://www.python.org/dev/peps/pep-0008/?#code-lay-out
http://www.cheatography.com/ilyes64/
https://www.linkedin.com/in/ilyes-kaanich/
http://crosswordcheats.com

Python Software Engineering Best Practices Cheat Sheet
by Ilyes KAANICH (ilyes64) via cheatography.com/124061/cs/23651/

Writing Modular Code (cont)

Functions should do one thing

Each function you write should be focused on doing one thing. If a
function is doing multiple things, it becomes more difficult to
generalize and reuse. Generally, if there's an " and " in your
function name, consider refact oring.

Arbitrary variable names can be more effective in certain functions

Arbitrary variable names in general functions can actually make
the code more readable.

Try to use fewer than three arguments per function

Try to use no more than three arguments when possible. This is
not a hard rule and there are times it is more approp riate to use
many parame ters. But in many cases, it's more effective to use
fewer arguments. Remember we are modula rizing to simplify our
code and make it more efficient to work with. If your function has
a lot of parame ters, you may want to rethink how you are splitting
this up.

Efficient Code

 Execute faster
 Take up less space in memory /st orage

The project you're working on would determine which of these is
more important to optimize for your company or product. When we
are performing lots of different transf orm ations on large amounts of
data, this can make orders of magnitudes of difference in perfor ‐
mance.
E.g. Sets faster than lists in python

Docume ntation

addi tional text or illust rated inform ation that comes with or is
embedded in the code of software.

Helpful for clarifying complex parts of code, making your code easier
to navigate, and quickly conveying how and why different
components of your program are used.

Several types of docume ntation can be added at different levels of
your program:
 In-line Comments - line level
 Docstrings - module and function level
 Project Docume nta tion - project level

Use version control

Version control, also known as revision control or source control, is
the management of changes to documents, computer programs,
large websites, and other collec tions of inform ation. Each revision is
associated with a timestamp and the person making the change.
The most famous version control system is Git

Testing

Testing your code is essential before deploy ment. It helps you catch
errors and faulty conclu sions before they make any major impact.

Test driven develo pment

a develo pment process where you write tests for tasks before you
even write the code to implement those tasks.

Unit Test

a type of test that covers a “unit” of code, usually a single
function, indepe ndently from the rest of the program.

Log Messages

Logging is the process of recording messages to describe events
that have occurred while running your software.

Be profes sional and clear

Bad: Hmmm... this isn't working???

Bad: idk.... :(

Good: Couldn't parse file.

Be concise and use normal capita liz ation

Bad: Start Product Recomm end ation Process
Bad: We have completed the steps necessary and

will now proceed with the recomm end ation process
for the records in our product database.

Good: Generating product recommendations.

Choose the approp riate level for logging

DEBUG - level you would use for anything that happens in the
program.
ERROR - level to record any error that occurs
INFO - level to record all actions that are user-d riven or system
specific, such as regularly scheduled operations

Provide any useful inform ation

Bad: Failed to read location data

Good: Failed to read location data: store_id

8324971

By Ilyes KAANICH (ilyes64)
cheatography.com/ilyes64/
www.linkedin.com/in/ilyes-
kaanich/

Published 11th August, 2020.
Last updated 11th August, 2020.
Page 2 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/ilyes64/
http://www.cheatography.com/ilyes64/cheat-sheets/python-software-engineering-best-practices
https://stackoverflow.com/questions/8929284/what-makes-sets-faster-than-lists/8929445#8929445
http://www.cheatography.com/ilyes64/
https://www.linkedin.com/in/ilyes-kaanich/
http://crosswordcheats.com

Python Software Engineering Best Practices Cheat Sheet
by Ilyes KAANICH (ilyes64) via cheatography.com/124061/cs/23651/

Code Reviews

Code reviews benefit everyone in a team to promote best progra ‐
mming practices and prepare code for produc tion.

Ques tions to Ask Yourself When Conducting a Code Review

Is the code clean and modular?

 Can I understand the code easily?
 Does it use meaningful names and whitespace?
 Is there duplicated code?
 Can you provide another layer of abstraction?
 Is each function and module necessary?
 Is each function or module too long?

Is the code efficient?

 Are there loops or other steps we can vectorize?
 Can we use better data structures to optimize any steps?
 Can we shorten the number of calcul ations needed for any
steps?
 Can we use generators or multip roc essing to optimize any
steps?

Is docume ntation effective?

 Are in-line comments concise and meanin gful?
 Is there complex code that's missing docume nta tion?
 Do function use effective docstr ings?
 Is the necessary project docume ntation provided?

Is the code well tested?

 Does the code high test coverage?
 Do tests check for intere sting cases?
 Are the tests readable?
 Can the tests be made more efficient?

Is the logging effective?

 Are log messages clear, concise, and profes sional?
 Do they include all relevant and useful inform ation?
 Do they use the approp riate logging level?

Code Review
Code Review Best Practices

Conducting a Code Review

Use a code linter

This can save you lots of time from code review. Using a Python
code linter like pylint can automa tically check for coding
standards and PEP 8 guidelines for you.

Conducting a Code Review (cont)

Explain issues and make sugges tions

 BAD: Make model evaluation code its own module

- too repeti tive.
 BETTER: Make the model evaluation code its own

module. This will simplify models.py to be less

repetitive and focus primarily on building

models.

 GOOD: How about we consider making the model

evaluation code its own module? This would

simplify models.py to only include code for

building models. Organizing these evalua tions
methods into separate functions would also allow

us to reuse them with different models without

repeating code.

Keep your comments objective

 BAD: I wouldn't groupby genre twice like you

did here... Just compute it once and use that

for your aggreg ations.
 BAD: You create this groupby dataframe twice

here. Just compute it once, save it as groupb ‐
y_genre and then use that to get your average

prices and views.

 GOOD: Can we group by genre at the beginning

of the function and then save that as a groupby

object? We could then reference that object to

get the average prices and views without

computing groupby twice.

Provide code examples

By Ilyes KAANICH (ilyes64)
cheatography.com/ilyes64/
www.linkedin.com/in/ilyes-
kaanich/

Published 11th August, 2020.
Last updated 11th August, 2020.
Page 3 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/ilyes64/
http://www.cheatography.com/ilyes64/cheat-sheets/python-software-engineering-best-practices
https://github.com/lyst/MakingLyst/tree/master/code-reviews
https://www.kevinlondon.com/2015/05/05/code-review-best-practices.html
http://www.cheatography.com/ilyes64/
https://www.linkedin.com/in/ilyes-kaanich/
http://crosswordcheats.com

	Python Software Engineering Best Practices Cheat Sheet - Page 1
	Clean and Modular Code
	Writing Clean Code: Nice Whitespace
	Writing Modular Code
	Writing Clean Code: Meaningful Names

	Python Software Engineering Best Practices Cheat Sheet - Page 2
	Use version control
	Testing
	Log Messages
	Efficient Code
	Documentation

	Python Software Engineering Best Practices Cheat Sheet - Page 3
	Code Reviews
	Conducting a Code Review

