
Java Data Structures Cheat Sheet
by Ieternalleo via cheatography.com/45716/cs/13401/

Array

Defi ​‐
nit ​io‐
n

- Stores data elements based on an
sequen ​tial, most commonly 0 based,
index. - Based on [tuple ​s]
(​htt ​p:/ ​/en.wi ​kip ​edi ​a.o ​rg/ ​wik ​i/T ​uple) from
set theory. - They are one of the
oldest, most commonly used data
struct ​ures.

Deta ​i
ls

- Optimal for indexing; bad at
searching, inserting, and deleting
(except at the end). - Linear arrays, or
one dimens ​ional arrays, are the most
basic. - Are static in size, meaning that
they are declared with a fixed size. -
Dynamic arrays are like one
dimens ​ional arrays, but have reserved
space for additional elements. - If a
dynamic array is full, it copies it's
contents to a larger array. - Two
dimens ​ional arrays have x and y
indices like a grid or nested arrays.

Big-
O
effici ​
ency

- Indexing: Linear array: O(1), Dynamic
array: O(1) - Search: Linear array: O(n),
Dynamic array: O(n) - Optimized
Search: Linear array: O(log n),
Dynamic array: O(log n) - Insertion:
Linear array: n/a Dynamic array: O(n)

Linked List

Defi ​‐
nit ​io‐
n

- Stores data with nodes that point to
other nodes. - Nodes, at its most basic
it has one datum and one reference
(another node). - A linked list _chains_
nodes together by pointing one node's
reference towards another node.

Deta ​i
ls

- Designed to optimize insertion and
deletion, slow at indexing and
searching. - Doubly linked list has
nodes that reference the previous
node. - Circ ​ularly linked list is simple
linked list whose tail, the last node,
references the head, the first node. -
Stack, commonly implem ​ented with
linked lists but can be made from
arrays too. - Stacks are last in, first
out (LIFO) data struct ​ures. - Made with
a linked list by having the head be the
only place for insertion and removal. -
Queu ​es, too can be implem ​ented with
a linked list or an array. - Queues are a
first in, first out (FIFO) data structure.
- Made with a doubly linked list that
only removes from head and adds to
tail.

Big-
O
effici ​
ency

- Indexing: Linked Lists: O(n) - Search:
Linked Lists: O(n) - Optimized Search:
Linked Lists: O(n) - Insertion: Linked
Lists: O(1)

Hash Map

Defi ​‐
nit ​io‐
n

- Stores data with key value pairs. -
Hash functi ​ons accept a key and
return an output unique only to that
specific key. - This is known as
hash ​ing, which is the concept that an
input and an output have a one-to-one
corres ​pon ​dence to map inform ​ation. -
Hash functions return a unique
address in memory for that data.

Deta ​i
ls

- Designed to optimize searching,
insertion, and deletion. - Hash
collis ​ions are when a hash function
returns the same output for two distinct
inputs. - All hash functions have this
problem. - This is often
accomm ​odated for by having the hash
tables be very large. - Hashes are
important for associ ​ative arrays and
database indexing.

Big-
O
effici ​
ency

- Indexing: Hash Tables: O(1) -
Search: Hash Tables: O(1) - Insertion:
Hash Tables: O(1)

Binary Tree

Defi ​
nit ​i
on

- Is a tree like data structure where
every node has at most two children. -
There is one left and right child node.

By Ieternalleo
cheatography.com/ieternalleo/

Published 6th November, 2017.
Last updated 6th November, 2017.
Page 1 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/ieternalleo/
http://www.cheatography.com/ieternalleo/cheat-sheets/java-data-structures
http://www.cheatography.com/ieternalleo/
http://crosswordcheats.com

Java Data Structures Cheat Sheet
by Ieternalleo via cheatography.com/45716/cs/13401/

Binary Tree (cont)

Deta ​i
ls

- Designed to optimize searching and
sorting. - A dege ​nerate tree is an
unbalanced tree, which if entirely one-
sided is a essent ​ially a linked list. -
They are comparably simple to
implement than other data struct ​ures. -
Used to make binary search trees. - A
binary tree that uses comparable keys
to assign which direction a child is. -
Left child has a key smaller than it's
parent node. - Right child has a key
greater than it's parent node. - There
can be no duplicate node. - Because of
the above it is more likely to be used as
a data structure than a binary tree. An
AVL Tree is a balanced binary search
tree. -The process for inserting or
deleting is the same as in a
regula ​r(u ​nba ​lanced) BST, except you
have to rebalance after each operation.
A node in an AVL tree is balanced if its
balance factor is either -1,0, or 1

Big-
O
effici ​
ency

- Indexing: Binary Search Tree: O(log
n) - Search: Binary Search Tree: O(log
n) - Insertion: Binary Search Tree:
O(log n)

The balance factor of a node is the height of
its right subtree minus the height of its left
subtree

Search Basics

Breadth First Search

Defi ​‐
nit ​io‐
n

- An algorithm that searches a tree (or
graph) by searching levels of the tree
first, starting at the root. - It finds every
node on the same level, most often
moving left to right. - While doing this it
tracks the children nodes of the nodes
on the current level. - When finished
examining a level it moves to the left
most node on the next level. - The
bottom ​-right most node is evaluated
last (the node that is deepest and is
farthest right of it's level).

Deta ​i
ls

- Optimal for searching a tree that is
wider than it is deep. - Uses a queue to
store inform ​ation about the tree while it
traverses a tree. - Because it uses a
queue it is more memory intensive than
depth first search. - The queue uses
more memory because it needs to
stores pointers

Big-
O
effici ​
ency

- Search: Breadth First Search: O(|E| +
|V|) - E is number of edges - V is
number of vertices

Depth First Search

Defi ​
nit ​i
on

- An algorithm that searches a tree (or
graph) by searching depth of the tree
first, starting at the root. - It traverses left
down a tree until it cannot go further. -
Once it reaches the end of a branch it
traverses back up trying the right child
of nodes on that branch, and if possible
left from the right children. - When
finished examining a branch it moves to
the node right of the root then tries to go
left on all it's children until it reaches the
bottom. - The right most node is
evaluated last (the node that is right of
all it's ancest ​ors).

Depth First Search (cont)

Deta ​i
ls

- Optimal for searching a tree that is
deeper than it is wide. - Uses a stack
to push nodes onto. - Because a stack
is LIFO it does not need to keep track
of the nodes pointers and is therefore
less memory intensive than breadth
first search. - Once it cannot go further
left it begins evaluating the stack.

Big-
O
effici ​
ency

- Search: Depth First Search: O(|E| +
|V|) - E is number of edges - V is
number of vertices

Breadth First Search Vs. Depth First Search

- The simple answer to this question is that it
depends on the size and shape of the tree.
- For wide, shallow trees use Breadth First
Search
- For deep, narrow trees use Depth First
Search

Nuances:

- Because BFS uses queues to store
inform ​ation about the nodes and its children, it
could use more memory than is available on
your computer. (But you probably won't have
to worry about this.)
- If using a DFS on a tree that is very deep you
might go unnece ​ssarily deep in the search. See
[xkcd] ​(ht ​tp: ​//x ​kcd.co ​m/761/) for more
inform ​ation.
- Breadth First Search tends to be a looping
algorithm.
- Depth First Search tends to be a recursive
algorithm.

Efficient Sorting Basics

By Ieternalleo
cheatography.com/ieternalleo/

Published 6th November, 2017.
Last updated 6th November, 2017.
Page 2 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/ieternalleo/
http://www.cheatography.com/ieternalleo/cheat-sheets/java-data-structures
http://www.cheatography.com/ieternalleo/
http://crosswordcheats.com

Java Data Structures Cheat Sheet
by Ieternalleo via cheatography.com/45716/cs/13401/

Merge Sort

Defi ​‐
nit ​io‐
n

- A comparison based sorting algorithm
- Divides entire dataset into groups of
at most two. - Compares each number
one at a time, moving the smallest
number to left of the pair. - Once all
pairs sorted it then compares left most
elements of the two leftmost pairs
creating a sorted group of four with the
smallest numbers on the left and the
largest ones on the right. - This process
is repeated until there is only one set.

Deta ​i
ls

- This is one of the most basic sorting
algori ​thms. - Know that it divides all the
data into as small possible sets then
compares them.

Big-
O
effici ​
ency

- Best Case Sort: Merge Sort: O(n) -
Average Case Sort: Merge Sort: O(n
log n) - Worst Case Sort: Merge Sort:
O(n log n)

Quicksort

Defi ​
nit ​i
on

- A comparison based sorting algorithm -
Divides entire dataset in half by selecting
the average element and putting all
smaller elements to the left of the
average. - It repeats this process on the
left side until it is comparing only two
elements at which point the left side is
sorted. - When the left side is finished
sorting it performs the same operation
on the right side. - Computer
archit ​ecture favors the quicksort
process.

Quicksort (cont)

Deta ​i
ls

- While it has the same Big O as (or
worse in some cases) many other
sorting algorithms it is often faster in
practice than many other sorting
algori ​thms, such as merge sort. - Know
that it halves the data set by the
average contin ​uously until all the
inform ​ation is sorted.

Big-
O
effici ​
ency

- Best Case Sort: Merge Sort: O(n) -
Average Case Sort: Merge Sort: O(n
log n) - Worst Case Sort: Merge Sort:
O(n^2)

Bubble Sort

Defi ​‐
nit ​io‐
n

- A comparison based sorting algorithm
- It iterates left to right comparing every
couplet, moving the smaller element to
the left. - It repeats this process until it
no longer moves and element to the
left.

Deta ​i
ls

- While it is very simple to implement, it
is the least efficient of these three
sorting methods. - Know that it moves
one space to the right comparing two
elements at a time and moving the
smaller on to left.

Big-
O
effici ​
ency

- Best Case Sort: Merge Sort: O(n) -
Average Case Sort: Merge Sort: O(n

2)

Merge Sort vs. QuickSort

- Quicksort is likely faster in practice.
- Merge Sort divides the set into the smallest
possible groups immedi ​ately then recons ​tructs
the increm ​entally as it sorts the groupings.
- Quicksort contin ​ually divides the set by the
average, until the set is recurs ​ively sorted.

Heap Sort

Defini ​tio
n:

Sorts using a complete binary Tree.

Details: Arra ​yList can be used to store a
Heap
For a node of i:
-Left child: 2i+1
-Right child: 2i+2
-Parent: (i - 1)/2

Big-O: O(nlogn)

By Ieternalleo
cheatography.com/ieternalleo/

Published 6th November, 2017.
Last updated 6th November, 2017.
Page 3 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

2)

- Worst Case Sort: Merge Sort: O(n

http://www.cheatography.com/
http://www.cheatography.com/ieternalleo/
http://www.cheatography.com/ieternalleo/cheat-sheets/java-data-structures
http://www.cheatography.com/ieternalleo/
http://crosswordcheats.com

	Java Data Structures Cheat Sheet - Page 1
	Array
	Linked List
	Hash Map
	Binary Tree

	Java Data Structures Cheat Sheet - Page 2
	Search Basics
	Breadth First Search
	Breadth First Search Vs. Depth First Search
	Nuances:
	Depth First Search
	Efficient Sorting Basics

	Java Data Structures Cheat Sheet - Page 3
	Merge Sort
	Merge Sort vs. QuickSort
	Heap Sort
	Bubble Sort
	Quicksort

