
Java Data Structures Cheat Sheet
by Ieternalleo via cheatography.com/45716/cs/13401/

Array

Defi ‐
nit io‐
n

- Stores data elements based on an
sequen tial, most commonly 0 based,
index. - Based on [tuple s]
(htt p:/ /en.wi kip edi a.o rg/ wik i/T uple) from
set theory. - They are one of the
oldest, most commonly used data
struct ures.

Deta i
ls

- Optimal for indexing; bad at
searching, inserting, and deleting
(except at the end). - Linear arrays, or
one dimens ional arrays, are the most
basic. - Are static in size, meaning that
they are declared with a fixed size. -
Dynamic arrays are like one
dimens ional arrays, but have reserved
space for additional elements. - If a
dynamic array is full, it copies it's
contents to a larger array. - Two
dimens ional arrays have x and y
indices like a grid or nested arrays.

Big-
O
effici
ency

- Indexing: Linear array: O(1), Dynamic
array: O(1) - Search: Linear array: O(n),
Dynamic array: O(n) - Optimized
Search: Linear array: O(log n),
Dynamic array: O(log n) - Insertion:
Linear array: n/a Dynamic array: O(n)

Linked List

Defi ‐
nit io‐
n

- Stores data with nodes that point to
other nodes. - Nodes, at its most basic
it has one datum and one reference
(another node). - A linked list _chains_
nodes together by pointing one node's
reference towards another node.

Deta i
ls

- Designed to optimize insertion and
deletion, slow at indexing and
searching. - Doubly linked list has
nodes that reference the previous
node. - Circ ularly linked list is simple
linked list whose tail, the last node,
references the head, the first node. -
Stack, commonly implem ented with
linked lists but can be made from
arrays too. - Stacks are last in, first
out (LIFO) data struct ures. - Made with
a linked list by having the head be the
only place for insertion and removal. -
Queu es, too can be implem ented with
a linked list or an array. - Queues are a
first in, first out (FIFO) data structure.
- Made with a doubly linked list that
only removes from head and adds to
tail.

Big-
O
effici
ency

- Indexing: Linked Lists: O(n) - Search:
Linked Lists: O(n) - Optimized Search:
Linked Lists: O(n) - Insertion: Linked
Lists: O(1)

Hash Map

Defi ‐
nit io‐
n

- Stores data with key value pairs. -
Hash functi ons accept a key and
return an output unique only to that
specific key. - This is known as
hash ing, which is the concept that an
input and an output have a one-to-one
corres pon dence to map inform ation. -
Hash functions return a unique
address in memory for that data.

Deta i
ls

- Designed to optimize searching,
insertion, and deletion. - Hash
collis ions are when a hash function
returns the same output for two distinct
inputs. - All hash functions have this
problem. - This is often
accomm odated for by having the hash
tables be very large. - Hashes are
important for associ ative arrays and
database indexing.

Big-
O
effici
ency

- Indexing: Hash Tables: O(1) -
Search: Hash Tables: O(1) - Insertion:
Hash Tables: O(1)

Binary Tree

Defi
nit i
on

- Is a tree like data structure where
every node has at most two children. -
There is one left and right child node.

By Ieternalleo
cheatography.com/ieternalleo/

Published 6th November, 2017.
Last updated 6th November, 2017.
Page 1 of 3.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/ieternalleo/
http://www.cheatography.com/ieternalleo/cheat-sheets/java-data-structures
http://www.cheatography.com/ieternalleo/
https://apollopad.com

Java Data Structures Cheat Sheet
by Ieternalleo via cheatography.com/45716/cs/13401/

Binary Tree (cont)

Deta i
ls

- Designed to optimize searching and
sorting. - A dege nerate tree is an
unbalanced tree, which if entirely one-
sided is a essent ially a linked list. -
They are comparably simple to
implement than other data struct ures. -
Used to make binary search trees. - A
binary tree that uses comparable keys
to assign which direction a child is. -
Left child has a key smaller than it's
parent node. - Right child has a key
greater than it's parent node. - There
can be no duplicate node. - Because of
the above it is more likely to be used as
a data structure than a binary tree. An
AVL Tree is a balanced binary search
tree. -The process for inserting or
deleting is the same as in a
regula r(u nba lanced) BST, except you
have to rebalance after each operation.
A node in an AVL tree is balanced if its
balance factor is either -1,0, or 1

Big-
O
effici
ency

- Indexing: Binary Search Tree: O(log
n) - Search: Binary Search Tree: O(log
n) - Insertion: Binary Search Tree:
O(log n)

The balance factor of a node is the height of
its right subtree minus the height of its left
subtree

Search Basics

Breadth First Search

Defi ‐
nit io‐
n

- An algorithm that searches a tree (or
graph) by searching levels of the tree
first, starting at the root. - It finds every
node on the same level, most often
moving left to right. - While doing this it
tracks the children nodes of the nodes
on the current level. - When finished
examining a level it moves to the left
most node on the next level. - The
bottom -right most node is evaluated
last (the node that is deepest and is
farthest right of it's level).

Deta i
ls

- Optimal for searching a tree that is
wider than it is deep. - Uses a queue to
store inform ation about the tree while it
traverses a tree. - Because it uses a
queue it is more memory intensive than
depth first search. - The queue uses
more memory because it needs to
stores pointers

Big-
O
effici
ency

- Search: Breadth First Search: O(|E| +
|V|) - E is number of edges - V is
number of vertices

Depth First Search

Defi
nit i
on

- An algorithm that searches a tree (or
graph) by searching depth of the tree
first, starting at the root. - It traverses left
down a tree until it cannot go further. -
Once it reaches the end of a branch it
traverses back up trying the right child
of nodes on that branch, and if possible
left from the right children. - When
finished examining a branch it moves to
the node right of the root then tries to go
left on all it's children until it reaches the
bottom. - The right most node is
evaluated last (the node that is right of
all it's ancest ors).

Depth First Search (cont)

Deta i
ls

- Optimal for searching a tree that is
deeper than it is wide. - Uses a stack
to push nodes onto. - Because a stack
is LIFO it does not need to keep track
of the nodes pointers and is therefore
less memory intensive than breadth
first search. - Once it cannot go further
left it begins evaluating the stack.

Big-
O
effici
ency

- Search: Depth First Search: O(|E| +
|V|) - E is number of edges - V is
number of vertices

Breadth First Search Vs. Depth First Search

- The simple answer to this question is that it
depends on the size and shape of the tree.
- For wide, shallow trees use Breadth First
Search
- For deep, narrow trees use Depth First
Search

Nuances:

- Because BFS uses queues to store
inform ation about the nodes and its children, it
could use more memory than is available on
your computer. (But you probably won't have
to worry about this.)
- If using a DFS on a tree that is very deep you
might go unnece ssarily deep in the search. See
[xkcd] (ht tp: //x kcd.co m/761/) for more
inform ation.
- Breadth First Search tends to be a looping
algorithm.
- Depth First Search tends to be a recursive
algorithm.

Efficient Sorting Basics

By Ieternalleo
cheatography.com/ieternalleo/

Published 6th November, 2017.
Last updated 6th November, 2017.
Page 2 of 3.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/ieternalleo/
http://www.cheatography.com/ieternalleo/cheat-sheets/java-data-structures
http://www.cheatography.com/ieternalleo/
https://apollopad.com

Java Data Structures Cheat Sheet
by Ieternalleo via cheatography.com/45716/cs/13401/

Merge Sort

Defi ‐
nit io‐
n

- A comparison based sorting algorithm
- Divides entire dataset into groups of
at most two. - Compares each number
one at a time, moving the smallest
number to left of the pair. - Once all
pairs sorted it then compares left most
elements of the two leftmost pairs
creating a sorted group of four with the
smallest numbers on the left and the
largest ones on the right. - This process
is repeated until there is only one set.

Deta i
ls

- This is one of the most basic sorting
algori thms. - Know that it divides all the
data into as small possible sets then
compares them.

Big-
O
effici
ency

- Best Case Sort: Merge Sort: O(n) -
Average Case Sort: Merge Sort: O(n
log n) - Worst Case Sort: Merge Sort:
O(n log n)

Quicksort

Defi
nit i
on

- A comparison based sorting algorithm -
Divides entire dataset in half by selecting
the average element and putting all
smaller elements to the left of the
average. - It repeats this process on the
left side until it is comparing only two
elements at which point the left side is
sorted. - When the left side is finished
sorting it performs the same operation
on the right side. - Computer
archit ecture favors the quicksort
process.

Quicksort (cont)

Deta i
ls

- While it has the same Big O as (or
worse in some cases) many other
sorting algorithms it is often faster in
practice than many other sorting
algori thms, such as merge sort. - Know
that it halves the data set by the
average contin uously until all the
inform ation is sorted.

Big-
O
effici
ency

- Best Case Sort: Merge Sort: O(n) -
Average Case Sort: Merge Sort: O(n
log n) - Worst Case Sort: Merge Sort:
O(n^2)

Bubble Sort

Defi ‐
nit io‐
n

- A comparison based sorting algorithm
- It iterates left to right comparing every
couplet, moving the smaller element to
the left. - It repeats this process until it
no longer moves and element to the
left.

Deta i
ls

- While it is very simple to implement, it
is the least efficient of these three
sorting methods. - Know that it moves
one space to the right comparing two
elements at a time and moving the
smaller on to left.

Big-
O
effici
ency

- Best Case Sort: Merge Sort: O(n) -
Average Case Sort: Merge Sort: O(n

2)

Merge Sort vs. QuickSort

- Quicksort is likely faster in practice.
- Merge Sort divides the set into the smallest
possible groups immedi ately then recons tructs
the increm entally as it sorts the groupings.
- Quicksort contin ually divides the set by the
average, until the set is recurs ively sorted.

Heap Sort

Defini tio
n:

Sorts using a complete binary Tree.

Details: Arra yList can be used to store a
Heap
For a node of i:
-Left child: 2i+1
-Right child: 2i+2
-Parent: (i - 1)/2

Big-O: O(nlogn)

By Ieternalleo
cheatography.com/ieternalleo/

Published 6th November, 2017.
Last updated 6th November, 2017.
Page 3 of 3.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

2)

- Worst Case Sort: Merge Sort: O(n

http://www.cheatography.com/
http://www.cheatography.com/ieternalleo/
http://www.cheatography.com/ieternalleo/cheat-sheets/java-data-structures
http://www.cheatography.com/ieternalleo/
https://apollopad.com

	Java Data Structures Cheat Sheet - Page 1
	Array
	Linked List
	Hash Map
	Binary Tree

	Java Data Structures Cheat Sheet - Page 2
	Search Basics
	Breadth First Search
	Breadth First Search Vs. Depth First Search
	Nuances:
	Depth First Search
	Efficient Sorting Basics

	Java Data Structures Cheat Sheet - Page 3
	Merge Sort
	Merge Sort vs. QuickSort
	Heap Sort
	Bubble Sort
	Quicksort

