computer architecture Cheat Sheet by hziad via cheatography.com/24934/cs/6357/

multiple choice

The memory access time is

a) The time from initiation to completion of a word or byte transfer from RAM N the cache memory that uses write-through protocol, if a write miss occurs b) The data is written directly to the main RAM In pipelined RISC processors, data dependencies can be handled. d) All of the above. A block-direct-mapped cache consists of a total of 32 blocks. The main memory contains 2K blocks, each consisting of 8 words. Each word is 4 bytes. Assuming a 16-bit byteaddressable Address space, how many bits are there in each of the Tag, Block, and Word fields? c) Tag= 6 bits. Block=5 bits, Word= 5 bits. 5 bits. By using the Booth algorithm

multiple choice (cont)

A block-associative-mapped cache consists of a total of 32 blocks. The main memory contains 2K blocks, each consisting of 8 words. Each word is 4 bytes. Assuming a 16-bit byteaddressable Address space, how many bits are there in each of the Tag, Block, and Word fields? A) Tag= 11 bits. Block=0 bits, Word= 5 bits. A block-4-way associative-mapped cache consists of a total of 32 blocks. The main memory Contains 2K blocks, each consisting of 8 words. Each word is 4 bytes. Assuming a 16-bit byte-addressable address space, how many bits are there in each of the Tag, Set, and Word fields? B) Tag= 9 bits. Set=2 bits, Word=

recoding technique, the binary

multiplier

multiple choice (cont)

01001101110 will be recoded as: A) +1 -1 0 +1 0 -1 +1 0 0 -1 0 The processor uses the Instruction Register (IR) to: Keep the instruction to be executed until it is finished. Q1: How many chips you need to build a memory module of size 4M 8 bits, if you only have Chips of size 256K 1 bits. a) 128 Q2: A block-direct-associative cache consists of a total of 64 blocks. The main memory Contains 1K blocks, each consisting of 8 words. Each word is 4 bytes. Assuming a 16-bit byte-addressable address space, how many bits are there in each of the Tag, Set, And Word fields? a) Tag= 5 bits. Block=6 bits, Word= 5 bits

multiple choice (cont)

Q3: The memory access time is: a) The time from initiation to completion of a word or byte transfer. Q4: Compared to the static RAM, the dynamic RAM is: a) Slower, Cheaper, Simpler, and always needs refreshing. Q5: The Double-Data-Rate (DDR) SDRAM: a) Transfers data on the rising and falling edges of its own clock cycle. Q6: The hierarchy of the memory in a computer is (starting from the processor): a) Registers, Cache, RAM, and Hard disk. Q7: The flash memory is made of: a) EEPROM cells. Q1: How many chips you need to build a memory module of size 4M 8 bits, if you only Have chips of size 256K 2 bits. a) 64

By hziad

cheatography.com/hziad/

Published 11th December, 2015. Last updated 11th December, 2015. Page 1 of 7.

computer architecture Cheat Sheet by hziad via cheatography.com/24934/cs/6357/

multiple choice (cont)	multiple choice (cont)	multiple choice (cont)	multiple choice (cont)	
Q2: A block-direct- cache consists	Q9: To solve the problem of	c) The cache misses may	b) a) +1 -1 +1 0 0 -1 +1 - 1 +1 0 -1	
of a total of 32 blocks. The main	branch penalty in pipelining	increase.	Q2: Which statement from the	
memory	architectures,:	d) All of the other options	following is true?	
Contains 4K blocks, each	a) Processors use delayed	Q2: The processor's control signals	a) The ripple-carry adder is slower	
consisting of 4 words. Each word is	branching technique.	are generated by:	than the carry-lookahead adder.	
4 bytes. Assuming	b) Processors use branch	a) Only hardware and called	Q3: Which statement from the	
A 16-bit byte-addressable address	prediction technique.	Hardwired approach	following is true?	
space, how many bits are there in	c) Processors use branch target	b) Only software and called	a) The 2-dimensional	
each of the Tag,	buffer.	Microprogrammed approach	combinational array is faster than	
Set, and Word fields?	d) All of the other options.	c) Either (a) or (b)	sequential circuit multiplier.	
a) Tag= 6 bits. Block=5 bits,	Q10: The pipeline may stall	Q3: In pipelining, to alleviate the	Q8: How many chips you need to	
Word= 4 bits.	because of:	problem of branch delayed slot	build a memory module of size	
Q8: To solve the problem of data	a) Data dependency.	problem:	1G 32 bits, if you only have chips of	
dependency in pipelining	b) Cache miss.	a) The compiler tries to find a	size 128M 64 bits.	
architectures,:	c) Limited hardware resources.	suitable instruction that precedes	a) 4	
a) Processors use data	d) All of the other options.	the branch and move it after the	Q9: A block direct-mapped cache	
forwarding.	Q11: Although the throughput	branch instruction.	consists of a total of 128 blocks.	
b) The compiler insert NOP	increases by increasing the	Q5: The Double-Data-Rate (DDR)	The main memory contains 64K	
operation between the	number of stages in	SDRAM:	blocks, each consisting of 16	
instructions.	The pipeline, the number of	a) Transfers data on the rising and	words. Each word is 4 bytes.	
c) The pipeline has to stall until the	a) The probability of data	falling edges of its own clock cycle.	Assuming a 16-bit byte-	
operands are ready.	dependency will increase.	Q1: By using the Booth algorithm	addressable address space, how	
d) Any of the other options.	b) The branch penalty will	recoding technique, the binary	many bits are there in each of the	
	increase.	multiplier 0 1 0 1 1 1 0 1 0 1 1 will	Tag, Block, and Word fields?	

By hziad

cheatography.com/hziad/

Published 11th December, 2015. Last updated 11th December, 2015. Page 2 of 7.

be:

computer architecture Cheat Sheet by hziad via cheatography.com/24934/cs/6357/

multiple choice (cont)	multiple choice (cont)	multiple choice (cont)	multiple choice (cont)
a) Tag= 3 bits. Block=7 bits,	Q16: The magnetic hard disk is	a) The locality of reference of	a) Any one of the other options.
Word= 6 bits.	formatted as:	computer programs.	Q28: In pipelined RISC processors,
Q10: A block associative-mapped	a) Tracks and sectors in each	Q22: The choice of a RAM chip for	the ideal time (throuput) needed to
cache consists of a total of 64	platter.	a given application depends on:	execute one instruction is:
blocks. The main memory contains	Q17: In virtual memory, a page	a) The cost, speed, power	a) One clock cycle.
64K blocks, each consisting of 8	fault occurs:	dissipation, and size of the chip.	Q29: In pipelined RISC processors,
words. Each word is 4 bytes.	a) When a virtual address has no	Q23: The main problem in DRAMs	what makes the actual throughput
Assuming a 16-bit byte-	corresponding physical address.	is:	less than the ideal one is:
addressable address space, how	Q18: Which statement is true?	a) They are slow and need	a) All of the other options.
many bits are there in each of the	a) The processor always issues a	refreshing of their contents.	b) The stall times due to data
Tag, Block, and Word fields?	virtual address and the MMU	Q24: The main problem in static	dependencies.
a) Tag= 11 bits. Block=0 bits,	translates it to a physical address.	RAMs is:	c) The branch penalties.
Word= 5 bits.	Q19: In the cache memory, the no	a) They use six transistors to build	d) The caches misses.
Q13: The access time for the hard	hit occurs when:	each cell.	Q30: The processor uses the
disk is:	a) The tag match occurs and the	Q25: Pipelining is used in RISC	program counter (PC) to:
a) The sum of the seek time and	valid bit is 0.	processors to:	a) Keep track of the address of the
rotational delay.	Q20: In the cache memory that	a) Increase the processor's	next instruction to be fetched and
Q14: The Digital Versatile Disk	uses write-back protocol, if a write	throughput.	executed.
stores up to 17GB because:	miss occurs:	Q26: The 5-satges in the pipelined	Q31: In pipelined RISC processors,
a) It uses two-layered two-sided	a) First transfer block containing	RISC processors is in the following	executing the instruction (Add R3,
disks, and red-light laser.	the addressed word into the cache	order:	R4, R5) requires the following steps
Q15: The CD-ReWritables (CD-	and then overwrite specific word in	a) Fetch, Decode, Compute,	in order:
RW) uses:	cached block.	Memory, Write.	a) Fetch, Decode, Compute, No-
a) Three different laser powers with	Q21: The cache memory makes	Q27: In pipelined RISC	action, and Write result into
an organic dye and alloy of	the RAM to appear to the	processors, data dependencies	register.
materials in the recording layer.	processor as much faster because	can be handled by:	
	of:		

By **hziad** cheatography.com/hziad/

Published 11th December, 2015. Last updated 11th December, 2015. Page 3 of 7.

computer architecture Cheat Sheet by hziad via cheatography.com/24934/cs/6357/

multiple choice (cont)

Q32: The processor's control signals can be generated by using: a) Either hardwired or microprogramming control

rate of instruction execution

1-GHz clock. Instruction statistics in a large program are as follows: Branch 20% Load 20% Store 10% Computational instructions 50%

90% of instruction fetch operations are completed in one clock cycle and 10% are completed in 4 clock cycles. On average, access to the data operands of a Load or Store, instruction is completed in 3 clock cycles

On average, instruction fetch takes 0.9+0.1x4 = 1.3 cycles. All instructions, except Load and Store, take four more cycles to complete. Load and Store instructions take two additional cycles, on average. Average completion time = $1.3 + (0.2 + 0.5) \times 4 + (0.2 + 0.1) \times 6 = 5.9$ cycles Instruction rate = 109/5.9 = 169.5 million instructions per second

a) Access to the memory is always completed in 1 clock cycle.

Execution rate = $1 \times 109 / 5 = 200$ million instructions per second

By **hziad**

cheatography.com/hziad/

chapter 5 example

Call_register R9

- Calls a subroutine
 whose address is in
 register R9:
 1. Memory address <- [PC],
 Read memory, IR <-Memory
 data, PC <- [PC] <- 4
 2. Decode instruction, RA
 <- [R9]
 3. PC-Temp<- [PC], PC <-
 [RA]
 4. RY <- [PC-Temp]
- 5. Register LINK <- [RY]

chapter 5 example (cont)

Q1: Assume that all memory access operations are completed in one clock cycle in a processor that has a 1-GHz clock. What is the frequency of memory access operations if Load and Store instructions constitute 20 percent of the dynamic instruction count in a program? (The dynamic count is the number of instruction executions, including the effect of program loops, which may cause some instructions to be executed more than once.) Assume that all instructions are executed in 5 clock cycles There is one memory access to fetch each instruction. Then, 20 percent of the instructions have a second memory access to read or write a memory

chapter 5 example (cont)

operand. On average, each instruction has 1.2 memory accesses in 5 clock cycles. Therefore, the frequency of memory accesses is (1.2/5) × 10^9 , or 240 million accesses per second. (1 Ghz= 10^9 hz) Give the sequence of actions for a Returnfrom-subroutine instruction in a RISC processor. Assume that the address LINK of the general-purpose register in which the subroutine return address is stored is given in the instruction field connected to address A of the register file (IR31-27). Whenever an instruction is loaded into the IR, the contents of the generalpurpose register whose address is given in bits IR31-27 are read and placed

Published 11th December, 2015. Last updated 11th December, 2015. Page 4 of 7.

computer architecture Cheat Sheet by hziad via cheatography.com/24934/cs/6357/

chapter 5 example (cont)

into register RA. Hence, a Returnfrom-subroutine instruction will cause the contents of register LINK to be read and placed in register RA. Execution proceeds as follows: 1. Memorv address←[PC], Read memory, Wait for MFC, IR←Memory data, PC←[PC] + 4 2. Decode instruction, RA←[LINK] 3. PC←[RA] 4. No action 5. No

At the time the instruction Load R6, 1000(R9) is fetched, R6 and R9 contain the values 4200 and 85320, respectively. Memory

action

location 86320 contains 75900. step 1 and 2: the values are determined by the previous instructions

chapter 5 example (cont) stept 3: RA = 85320, RB = 4200. Step 4: RA = 85320, RB = 4200, RZ = 86320, RM= 4200. Step 5: RA = 85320, RB = 4200, RZ = 86320,

RM= 4200 RY = 75900.

16M × 32 memory using 1M × 4 memory chips

A 16M module can be structured as 16 rows, each containing eight 1M x 4 chips. A 24-bit address is required. Address lines A19-0 should be connected to all chips. Address lines A23-20 should be connected to a 4-bit decoder to select one of the 16 rows.

A block-set-associative cache

A block-set-associative cache consists of a total of 64 blocks, divided into 4-block sets. The main memory contains 4096 blocks, each consisting of 32 words. Assuming a 32-bit byteaddressable address space, how many bits are there in each of the Tag, Set, and Word fields?

A block-set-associative cache (cont

```
Each block contains 128 bytes,
thus requiring a 7-bit Word
field. There are 16 sets,
requiring a 4-bit Set field. The
remaining 21 bits of the address
constitute the tag field.
```

problem set Mult

A = 010111 and B = 110110 b) A = 110011 and B = 101100 c) A = 001111 and B = 001111

Question about the sequential circuit

how to implement multiplication of 2'scomplement n-bit numbers using the Booth algorithm, by clearly specifying inputs and outputs for the Control sequencer and any other changes needed around the adder and register A. Both the A and M registers are augmented by one bit to the left to hold a sign extension bit.

Question about the sequential circuit (cont)

The adder is changed to an n + 1-bit adder. A bit is added to the right end of the Q register to implement the Booth multiplier recoding operation. It is initially set to zero. The control logic decodes the two bits at the right end of the Q register according to the Booth algorithm. The right shift is an arithmetic right shift as indicated by the repetition of the extended sign bit at the left end of the A register ..

R2, R3, R4, R5, R6, and R7

Load R	2,	#A	VEC	
Load R	З,	#B	VEC	
Load R	4,	#3		
And R5	, R	25, 1	R0	
LOOP:	LC	ad 1	R6,	
(R2)				
Load R	7,	(R3))	
Multip	ly	R6,	R6,	R7
Add R5	, R	25, 1	R6	
Add R2	, R	22,	#4	
Add R3	, R	23,	#4	
Subtra	ct	R4,	#1	
Branch	>0	LOOI	P	

By **hziad**

cheatography.com/hziad/

Published 11th December, 2015. Last updated 11th December, 2015. Page 5 of 7.

computer architecture Cheat Sheet by hziad via cheatography.com/24934/cs/6357/

R2, R3, R4, R5, R6, and R7 (cont)

Load R7, # RESUI	л		
Store R5. (R7)			
End			
ORIGIN 500			
A_VEC: DATAWORD	05,	-20,	
10			
B_VEC: DATAWORD	09,	04,	07
RESULT: RESERVE	4		
R2=512, R3=524,	R4=0),	
R5=25 R6=7 R7=52	24		

pipeline provides forwarding paths

Cycle	R2	R3	R4	R5	R6	R7	R8	RZ	RY
1	4	8	*	128	2	٠	•	*	٠
2	4	8	8	128	2	٠	•	٠	٠
3	4	8	٠	128	2	٠	+	*	٠
4	4	8	٠	128	2	٠	•	12	٠
5	4	8	*	128	2	*	+	130	12
6	4	8	12	128	2	*		118	130
7	4	8	12	128	2	130	+	*	118
8	4	8	12	128	2	130	118	*	8
Clock	cycle			2	з	4	5	6	7 Ti
Add	R4, R3	, R2		· D	С	М	w		
Or R	7, R6, I	R.5		F	D	с	м	w	
		. R7. R4			Г	D	₩ 	М	w

The result from theALU is 130 – 12 = 118. This result is available in register RZ during cycle 6. The result of the Or instruction, 130, is in register RY during in cycle 6. In cycle 6, the Subtract instruction is in the Memory stage. The unspecified instruction following the Subtract instruction is generating a result in the Compute stage. In cycle 7, the result of the unspecified instruction is in register RZ, and the result of the Subtract instruction is in register RY.

Chapter 6 execution time and speed up

Assume that 20% of the dynamic count of the instructions executed for a program are branch instructions. There are no pipeline stalls due to data dependencies. • Static branch prediction is used with a not-taken assumption. a) Determine the execution times for two cases: when 30 percent of the branches are taken, and when 70 percent of the branches are taken. b) Determine the speedup for one case relative to the other. Express the speedup as a percentage relative to 1

In first case, 30% of branches are taken but we assumed not-taken, so they are mispredicted (one cycle penalty 30% from 20% branch instructions): The value of δ branch_penalty = 0.20 × 0.30 ×1 = 0.06

Chapter 6 execution time and speed up (cont)

In second case, 70% of branches are taken but we assumed not-taken, so they are mispredicted (one cycle penalty 70% from 20% branch_penalty = 0.20 × 0.70 ×1 = 0.14 Using S = 1 + δbranch_penalty, the execution time: in first case is (1.06 × N)/R and (1.14 × N)/R for the second case.

b) Because the execution time for the first case is smaller, the performance improvement as a speedup percentage is:(1.14/1.06 -1)*100=7.5%

Chapter 9

Overflow =cn \oplus cn-1 or xn-1 yn-1(sn-1) +(xn-1)(yn-1) sn-1 For the subtraction operation X-Y on 2's-complement numbers X and Y • We form the 2's-complement of Y and add it to X . • Set Add/Sub =0 and c0= 0 for addition. • Set Add/Sub =1 and c0 = 1 for subtraction

Chapter 9 (cont)

4-bit adder has four carry-out signals: c1 = G0 + P0 c0, c2 = G1 + P1G0 + P1P0 c0, c3 = G2 + P2G1 + P2P1G0 + P2P1P0 c0, c4 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0 c0

A sequence of n addition cycles generates a 2n-bit product Delay = n * (adder + control delays)

For n = 32, delay is approximately 32 14 = 448 gate delays

Registers A and Q are shift registers, together, they hold partial product PPi while multiplier bit qi generates the signal Add/Noadd.At the end of each cycle, C, A, and Q are shifted right one bit position to allow for growth of the partial product as the multiplier is shifted out of register Q

Non-Restoring Division:

Initially Shift Subtract Set q_0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left.\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \Box \\ 0 & 0 & 0 & 0 \end{array}\right\}$	First cycle
Shift Add Set q ₀	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Second cycle
Shift Add Set q ₀	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Third cycle
Shift Subtract Set q ₀	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Fourth cycle
Add	$\underbrace{\begin{smallmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ Remainder \\ \hline \\ $	Quotient	Restore remaind

Stage 1: Do the following two steps
n times:
1. If the sign of A is 0, shift A and Q
left one bit position and subtract M
from A; otherwise, shift A and Q left
and add M to A.
2. Now, if the sign of A is 0, set q0
to 1; otherwise, set q0 to 0.
Stage 2: If the sign of A is 1, add M
to A.

Sponsored by Readability-Score.com Measure your website readability! https://readability-score.com

By hziad cheatography.com/hziad/

Published 11th December, 2015. Last updated 11th December, 2015. Page 6 of 7.

computer architecture Cheat Sheet by hziad via cheatography.com/24934/cs/6357/

cheatography.com/hziad/

Published 11th December, 2015. Last updated 11th December, 2015. Page 7 of 7.