\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{no (hqneyroses)} \pdfinfo{ /Title (genes-and-health.pdf) /Creator (Cheatography) /Author (no (hqneyroses)) /Subject (genes and health Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{3670A3} \definecolor{LightBackground}{HTML}{F2F6F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{genes and health Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{no (hqneyroses)} via \textcolor{DarkBackground}{\uline{cheatography.com/196921/cs/41469/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}no (hqneyroses) \\ \uline{cheatography.com/hqneyroses} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 16th December, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{p{0.63192 cm} x{0.86889 cm} x{0.86889 cm} p{0.2633 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{3.833cm}}{\bf\textcolor{white}{Processes for topic 2}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Process of DNA replication}} & {\bf{Process of transcription}} & {\bf{Process of translation}} & \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \seqsplit{Semi-conservative} \seqsplit{replication} is where the DNA molecule unwinds and unzips because of the enzyme DNA helicase so the hydrogen bonds between the bases break. The free DNA \seqsplit{nucleotides} line up \seqsplit{alongside} each single DNA strand and hydrogen bonds form between the \seqsplit{complementary} bases. The enzyme DNA \seqsplit{polymerase} links the adjacent \seqsplit{nucleotides} with \seqsplit{phosphodiester} bonds in \seqsplit{condensation} \seqsplit{reactions} to form new \seqsplit{complementary} strands. & The DNA helicse unzips and unwinds the DNA at the gene that codes for the desired protein. The enzyme RNA polymerase then attaches to the DNA. The template strand is transcribed - an mRNA molecule is created using \seqsplit{complementary} RNA nucleotides. \seqsplit{Phosphodiester} bonds form between the RNA nucleotides of the mRNA strand. The mRNA moves out of the nuclear pores of the nuclear envelope. & The mRNA molecule attaches to a ribosome. The mRNA binds to the small subunit so that 2 mRNA codons face the 2 binding sites of the larger subunit. A tNRA anticodon sequence \seqsplit{complementary} to the mRNA codon sequence brings along a particular amino acid. Within the cytoplasm, free amino acids become attached to the correct tRNA molecules. \seqsplit{Complementary} anticodon UAC hydrogen bonds to the start codon. The second codon faces the next binding site and the \seqsplit{complementary} tRNA amino acid complex binds to it. A peptide bond forms between the 2 amino acids via a condensation reaction between the amine group of the amino acid and carboxyl group (COOH) of the next, forming a dipeptide. The tRNA returns to the cytoplasm where it can collect another amino acid 9. This process continues until a stop codon is reached. There are no anticodons to thee codons so no amino acids. Polypeptide chain detaches from the ribosome. & \tn % Row Count 76 (+ 72) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{CF stages}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Remember this is for a healthy individual.}} & {\bf{Remember this is for a CF sufferer.}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} 1. Na+ is actively pumped across the basal membrane & 1. Cl- is pumped into the cell across the basal membrane. \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} 2. Na+ diffuses through sodium channels in the apical membrane & 2. Cl- diffuses through the open CFTR channels. \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} 3. Cl- diffuses down electrical gradient & 3. Na+ diffuses down the electrical gradient into the mucus \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} 4. Water is drawn out of cells by osmosis due to the high concentration in the fluid tissue & 4. Elevated salt concentration in the mucus draws water out of the cell by osmosis. \tn % Row Count 18 (+ 5) % Row 5 \SetRowColor{white} 5. Water is drawn out of the mucus by osmosis & 5. Water is drawn into the cell by osmosis \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.03122 cm} x{1.00089 cm} x{1.00089 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{3.833cm}}{\bf\textcolor{white}{Cystic Fibrosis}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Respiratory system}} & {\bf{Reproductive system}} & {\bf{Digestive system}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} The cilia in the lungs of a CF sufferer would struggle to beat/move mucus out of the lungs due to the mucus being abnormally thick and sticky (viscous). This would mean that there is an increased risk of lung infections. & {\bf{Males:}} The sperm cannot leave the testes because the vas deferens is blocked by the highly viscous mucus. This means that the vas deferens is absent so sperm cannot pass through. & The pancreatic enzymes cannot enter the intestines because the pancreatic duct is blocked by the thick mucus. Due to digestion being less efficient, a high energy diet is required. Pancreatic enzymes that are trapped behind the thick mucus damage the pancreatic cells (e.g. ones that produce insulin) and cysts form in the pancreas as a result. Diabetes may also occur. \tn % Row Count 31 (+ 29) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{x{1.03122 cm} x{1.00089 cm} x{1.00089 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{3.833cm}}{\bf\textcolor{white}{Cystic Fibrosis (cont)}} \tn % Row 2 \SetRowColor{LightBackground} Thicker mucus is produced because the chloride ions cannot leave the cell through the CFTR protein channel and sodium ions don't move out of the cells so water moves into cells by osmosis. & {\bf{Females:}} A mucus plug develops in the cervix which stops the sperm from reaching the egg so female sufferers with CF are less likely to become pregnant and are more likely to be infertile. & \tn % Row Count 15 (+ 15) % Row 3 \SetRowColor{white} \mymulticolumn{3}{x{3.833cm}}{The thickness of the mucus depends/varies on the mutation because different mutations will have different effects on the protein produced and the chloride ion transport is affected by the extent of changes to the CFTR protein.} \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.65825 cm} p{0.65825 cm} p{0.65825 cm} p{0.65825 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{3.833cm}}{\bf\textcolor{white}{Genetic screening}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Amniocentesis}} & {\bf{Chrionic Villus Sampling}} & {\bf{NIPD \seqsplit{(non-invasive} prenatal diagnosis)}} & {\bf{PGD \seqsplit{(preimplantation} genetic diagnosis)}} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} • Done at 15-17 weeks of pregnancy & • Done at 8-12 weeks of pregnancy & • Done at 7-9 weeks of pregnancy & • N/A (for when it's done) \tn % Row Count 9 (+ 4) % Row 2 \SetRowColor{LightBackground} • A needle is placed into the amniotic fluid to collect foetal cells that have fallen off the placenta or foetus & • A small sample of the placenta is taken either through the wall of the abdomen or through the vagina & • DNA fragments are taken from the mother's blood plasma (most of it is cffDNA) for analysis & • Couple undergo IVF (30\% success rate for women under 35) \tn % Row Count 21 (+ 12) % Row 3 \SetRowColor{white} • Allows the parents to make informed choices about future treatment, prepares parents for a child with a disease, gives the parents option for abortion. & • N/A & • Less traumatic procedure & • Only implants healthy embryos \tn % Row Count 37 (+ 16) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{p{0.65825 cm} p{0.65825 cm} p{0.65825 cm} p{0.65825 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{3.833cm}}{\bf\textcolor{white}{Genetic screening (cont)}} \tn % Row 4 \SetRowColor{LightBackground} • 1\% risk of \seqsplit{miscarriage} & • Claimed 1-2\% risk of \seqsplit{miscarriage} & & • Procedure involving IVF can be regarded as unethical because the embryos are discarded, \seqsplit{emotionally} \seqsplit{traumatic.} \tn % Row Count 12 (+ 12) % Row 5 \SetRowColor{white} • {\bf{Invasive method}} & • {\bf{Invasive method}} & • {\bf{Non-invasive}} & • {\bf{Non-invasive}} \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.65825 cm} p{0.65825 cm} p{0.65825 cm} p{0.65825 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{3.833cm}}{\bf\textcolor{white}{CP 4 - Enzymes}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Variables}} & {\bf{Controls (same)}} & {\bf{Repeats (why?)}} & {\bf{Results}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} • IV: \seqsplit{concentration} of the enzyme & • \seqsplit{Temperature} (C) & • To compare optimum \seqsplit{temperature} for \seqsplit{enzyme-substrate} complex to form & • As the \seqsplit{temperature} (C) gets higher, the active site of the enzyme denatures faster. \tn % Row Count 11 (+ 9) % Row 2 \SetRowColor{LightBackground} • DV: time in seconds taken for the enzyme to break down substrate (using a \seqsplit{stopclock)} & • Volume of enzyme (cm3) & & \tn % Row Count 20 (+ 9) % Row 3 \SetRowColor{white} & • Volume and \seqsplit{concentration} of the substrate & & \tn % Row Count 25 (+ 5) % Row 4 \SetRowColor{LightBackground} & • pH & & \tn % Row Count 26 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Mononucleotide diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hqneyroses_1701295946_nucleotide-schematic_med.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Dipeptide diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hqneyroses_1701292484_dipeptide ngl.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{You need to also draw water on. Remember, the O is on top and 2 Hs at the bottom.}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Definition of a recessive allele}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Recessive alleles are a different form of a gene and have the same two alleles (e.g. rr) and they are not expressed in the presence of a dominant allele. They are in the same locus of a chromosome but are a different form of a gene.} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Definition of a gene}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{A gene is a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Definition of template}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Where the RNA nucleotides attach for transcription} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Definition of an allele}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{A different version of a gene found on a chromosome.} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of an amino acid}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hqneyroses_1701194295_amino acid structure.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{You need to know this for the exam since you have to draw it out.}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Definition of a dominant allele}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{A dominant allele is the one that is expressed in the same phenotype (e.g. RR) and is found on the same locus of a chromosome.} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Compare and constract diffusion + active transport}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{➼ both diffusion and active transport move molecules through the phospholipid bilayer/cell surface membrane} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{➼ molecules can move through proteins in both diffusion and active transport} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{➼ diffusion occurs {\bf{down}} a concentration gradient whereas active transport occurs {\bf{against}} a concentration gradient} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{➼ diffusion is a {\bf{passive process}} that doesn't require ATP whereas active transport does require ATP} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Compare and constract endocytosis + exocytosis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{➼ {\bf{both endocytosis and exocytosis involve the usage of vesicles}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{➼ both endocytosis and exocytosis {\bf{involve energy from ATP}}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{➼ {\bf{exocytosis}} involes {\bf{molecules/substances leaving the cell}} whereas {\bf{endocytosis}} involves {\bf{substances/molecules entering the cell}}} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{➼ {\bf{exocytosis}} involves {\bf{vesicles fusing with the cell surface membrane}} whereas {\bf{endocytosis}} involves the {\bf{formation of vesicles}} from the cell surface membrane} \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Human lung adaptations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{• Rate of diffusion is proportional to surface area - alveoli have a large surface area} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{• Rate of diffusion is proportional to difference in concentration - breathing maintains a difference in gas concentrations} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{• Rate of diffusion is proportional to difference in concentration - blood flow maintains a difference in gas concentrations} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{• Rate of diffusion is inversely proportional to diffusion distance - walls of alveoli and capillaries are one cell thick} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{• Diffusion distance is reduced due to flattened cells forming alveoli and capillary walls} \tn % Row Count 13 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{• Rate of diffusion is proportional to diffusion constant - cell membranes are relatively permeable to non-polar gas molecules} \tn % Row Count 16 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Perfect exam answer (4-6 marks):}} The human lungs are adapted for gas exchange because the diffusion distance for gas exchange is reduced due to the flattened cells forming alveoli and capillary walls. The rate of diffusion is proportional to the surface area because the alveoli have a large surface area for gas exchange. Furthermore, the walls of the alveoli and capillaries are one cell thick so the rate of diffusion is inversely proportional to the diffusion distance and blood flow maintains a difference in gas concentrations.} \tn % Row Count 27 (+ 11) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{NB:}} Fick's law states that the larger the surface area, difference in concentration and shorter the diffusion distance the quicker the rate. {\bf{You need to remember this for these kinds of exam questions.}}} \tn % Row Count 32 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Sim + diff between fac. diffusion and AT}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Similarity:}} Both facilitated diffusion and active transport use carrier/transport proteins} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Difference:}} Facilitated diffusion is a passive process that doesn't require ATP whereas active transport uses ATP for energy.} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.71091 cm} p{0.50027 cm} p{0.71091 cm} p{0.71091 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{3.833cm}}{\bf\textcolor{white}{CP 3 - Beetroot practical}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Variables}} & {\bf{Controls (how?)}} & {\bf{Repeats (why?)}} & {\bf{Results}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} • IV: \seqsplit{temperature} of the water (Celsius) & • Volume of \seqsplit{distilled} water & • To calculate the \seqsplit{permeability} of the beetroot membrane & • As \seqsplit{temperature} of the water increases, the beetroot \seqsplit{permeability} \seqsplit{decreases.} \tn % Row Count 11 (+ 8) % Row 2 \SetRowColor{LightBackground} • DV: \% \seqsplit{transmission} of light through resulting solution using a cuvette & • Time left in water & & \tn % Row Count 19 (+ 8) % Row 3 \SetRowColor{white} & • Size of \seqsplit{beetroot} piece & & \tn % Row Count 23 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Why is genetic screening used?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{• to confirm diagnosis} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{• for testing embryos} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{• to identify carriers} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.81949 cm} x{1.61351 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{tRNA and mRNA}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{tRNA}} & {\bf{mRNA}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} • folded/clover leafed & • straight folded chain \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} • size/length of tRNA is constant & • size/length of mRNA is variable \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} • tRNA has anticodons/amino acid binding sites & • mRNA has codons \tn % Row Count 8 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{• both contain RNA mononucleotides} \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{3.833cm}}{• both are single stranded} \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Difference between transcription and replication}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{DNA Replication}} & {\bf{Transcription}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} • Replication produces {\bf{double stranded DNA molecules}} & • Transcription produces a {\bf{single stranded RNA molecule}} \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} • Replication involves {\bf{DNA nucleotides}} & • Transcription involves {\bf{RNA nucleotides}} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} • Replication uses {\bf{DNA polymerase}} & • Transcription requires {\bf{RNA polymerase}} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} • Replication produces {\bf{identical copies}} & • Transcription produces a {\bf{complementary copy}} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.7165 cm} x{1.7165 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Globular and fibrous proteins}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{3.833cm}}{• Both globular and fibrous proteins are {\bf{chains of amino acids joined by peptide bonds}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{3.833cm}}{• Both globular and fibrous proteins {\bf{contain hydrogen/disulfide/ionic bonds}}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} • Globular proteins have {\bf{hydrophillic groups}} on the {\bf{outside}} (soluble) & • Fibrous proteins have {\bf{hydrophobic groups}} on the outside (insoluble) \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} • Globular proteins have {\bf{tertiary or quaternary structures}} & • Fibrous proteins have {\bf{little to no tertiary structure}} \tn % Row Count 12 (+ 4) % Row 4 \SetRowColor{LightBackground} • Globular proteins are {\bf{folded into compact shapes}} & • Fibrous proteins have {\bf{long chains}} \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Compare and constrast deletion \& substitution}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{• Deletion could affect every codon but substitution will {\bf{only affect one codon.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{• Deletion is {\bf{more likely to affect the position}} of the start codon/stop codon and results in a different sequence of amino acids whereas substitution may {\bf{not affect the sequence of amino acids.}}} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{• Substitution {\bf{may code for the same amino acid}} due to the {\bf{degenerate nature}} of the genetic code.} \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}