genes and health Cheat Sheet by no (hqneyroses) via cheatography.com/196921/cs/41469/

Genetic screening					
Amniocentesis	Cł	Chrionic Villus Sampling		NIPD (non-invasive prenatal diagnosis)	PGD (preimplantation genetic diagnosis)
		Done at 8-12 weeks of pregnancy		 Done at 7-9 weeks of pregnancy 	• N/A (for when it's done)
 A needle is placed into the amn collect foetal cells that have faller placenta or foetus 	n off the pla th ab	A small sample acenta is taken rough the wall odomen or thro gina	either of the	 DNA fragments are taken from the mother's blood plasma (most of it is cffDNA) for analysis 	Couple undergo IVF (30% success rate for women under 38
 Allows the parents to make info choices about future treatment, p parents for a child with a disease parents option for abortion. 	repares	N/A		Less traumatic procedure	 Only implants healthy embryos
1% risk of miscarriage		Claimed 1-2% r iscarriage	isk of		 Procedure involving IVF can be regarded as unethical because the embryos are discarded, emotionally traumatic.
Invasive method	•	nvasive metho	d	Non-invasive	Non-invasive
Processes for topic 2	Processes for	r topic 2 (cont)	CF	- stages	Cystic Fibrosis (cont)
Process Process Process of DNA of of replication transc- transl- ription ation	Semi-cons- ervative replication is where the DNA molecule unwinds and unzips because of the enzyme DNA helicase so the hydrogen bonds between the bases break. The free DNA nucleotides line up alongside each single DNA strand and hydrogen	The DNA helicse unzips and unwinds the DNA at the gene that codes for the desired protein. The enzyme RNA polymerase then attaches to the DNA. The template strand is transcribed - an mRNA molecule is created using compleme-	The mRNA molecule attaches to a ribosome. The mRNA binds to the small subunit so that 2 mRNA codons face the 2 binding sites of the larger subunit. A tNRA anticodon sequence complementary to the mRNA codon sequence codon sequence codon sequence codon sequence codon sequence complementary to the mRNA codon sequence codon sequence codon sequence complementary to the mRNA codon sequence complementary t		

bases. The enzyme	ester bonds form	amino Rememb		Remember	The cilia in	Males:	The
DNA	between	IS IOF a ne		this is for a	the lungs	The	pancreati
	the RNA	Within the individual	l.	CF sufferer.	of a CF	sperm	enzymes
polymerase links the	nucleotides	cytoplasm, 1. Na+ is free amino		1. CI- is	sufferer	cannot	cannot
adjacent	of the	actively		pumped into	would	leave	enter the
	mRNA	pumped a	across	the cell across	struggle to	the	intestines
nucleotides		become the basal		the basal	beat/move	testes	because
with	strand. The	attached membrar	ne	membrane.	mucus out	because	the
phosphodi-	mRNA	to the	ffuses	2. CI- diffuses	of the	the vas	pancreati
ester bonds	moves out	COTTECL through a		through the	lungs due	deferens	duct is
in conden-	of the	tRNA through s molecules.		open CFTR	to the	is	blocked
sation	nuclear	Comple ^{_apical}		channels.	mucus	blocked	by the
reactions to	pores of the	mentary ^{membrar}	ne		being	by the	thick
form new	nuclear			2 No.	abnormally	highly	mucus.
comple-	envelope.	anticodon CI- diff		3. Na+ diffuses down	thick and	viscous	Due to
mentary		UAC down ele	ctrical		sticky	mucus.	digestion
strands.		hydrogegradient		the electrical	(viscous).	This	being les
		bonds to		gradient into	This would	means	efficient,
		the start		the mucus	mean that	that the	high
		codon. 4. Water		4. Elevated	there is an	vas	energy
		The drawn ou	t of	salt concen-	increased	deferens	diet is
		second cells by		tration in the	risk of lung	is	required.
		codon osmosis	due to	mucus draws	infections.	absent	Pancreat
		faces the high		water out of		SO	enzymes
		next concentra		the cell by		sperm	that are
		binding in the flui	d	osmosis.		cannot	trapped
		site and _{tissue}				pass	behind th
		the 5. Water	is	5. Water is		through.	thick
		comple- drawn ou	t of	drawn into the			mucus
		the mucu	is by	cell by			damage
		osmosis		osmosis			the
		amino acid					pancreati
		complex Cystic Fil	orosis				cells (e.g
		binds to it.	Repro	od- Digestive			ones that
		A peptide	uctive	•			produce
		evetor	syster	3			insulin)
			0,0101				and cysts
		between					form in th
		the 2					pancreas
		amino					as a
		acids via a					result.
		conden-					Diabetes
		sation					may also
		reaction					occur.
		between					
		the amine					
		group of					
		the amino					
		acid and					
		carboxyl					
		group					
		(COOH) of					
		the next,					
		forming a					
		dipeptide.					
		The tRNA					
		returns to					
		the					

the

cytoplasm where it can collect another amino acid 9. This process continues until a stop codon is reached. There are no anticodons to thee codons so no amino acids. Polypeptide chain detaches from the ribosome.

By no (hqneyroses)

Not published yet. Last updated 16th December, 2023. Page 2 of 6. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/hqneyroses/

genes and health Cheat Sheet by no (hqneyroses) via cheatography.com/196921/cs/41469/

Cystic Fibrosis (cont)	CP 4 - Enz	ymes (cont	t)	Mononucleotide diagram	Structure of an amino acid
Thicker mucus s produced because the chloride ions cannot leave he cell hrough the CFTR protein channel and	Females: A mucus plug develops in the cervix which stops the sperm from reaching the egg so female	• IV: concen- tration of the enzyme	• Temper ature (C)	• To compare optimum temper- ature for enzyme- su- bstrate complex	Phosphate Group Pentose Sugar higner, the active S Dipéptide diagram enzyme denatur $H_{N-C-C-N-C-C^{O}}$	Nitrogenous H
sodium ions don't move out of the cells so water moves nto cells by osmosis.	sufferers with CF are less likely to become pregnant and are more likely to be infertile.	• DV: time in seconds taken for the enzyme	• Volume	to form	faster. H H H OH (cm 3) You need to also draw water Remember, the O is on top a 2 Hs at the bottom. Definition of a recessive allel	is expressed in the same phenotype (e.g. RR) and is found on the same locus of a
The thickness of the mucus depends/varies on the mutation because different mutations will have different effects on the protein produced and the chloride ion transport is affected by the extent of changes to the CFTR protein.		• Volume the subs • pH		Recessive alleles are a differ form of a gene and have the same two alleles (e.g. rr) and they are not expressed in the presence of a dominant allele tration of re in the same locus of chromosome but are a different form of a gene.	Compare and constract diffusion + active transport → both diffusion and active transport move molecules of a through the phospholipid bilayer r/cell surface membrane → molecules can move through	
CP 4 - Enzymes /ariables Cor (sar	trols Repeats	Results			Definition of a gene A gene is a sequence of base on a DNA molecule that code for a sequence of amino acid a polypeptide chain	concentration gradient whereas
					Definition of template Where the RNA nucleotides attach for transcription	➡ diffusion is a passive process that doesn't require ATP whereas active transport does require ATP
					Definition of an allele A different version of a gene found on a chromosome.	Compare and constract endocy tosis + exocytosis both endocytosis and exocytosis involve the usage of vesicles both endocytosis and

cheatography.com/hqneyroses/

Page 3 of 6.

Yours! https://apollopad.com

genes and health Cheat Sheet by no (hqneyroses) via cheatography.com/196921/cs/41469/

Compare and constract endocytosis + exocytosis (cont)

► exocytosis involes molecules/substances leaving the cell whereas endocytosis involves substances/molecules entering the cell

➤ exocytosis involves vesicles fusing with the cell surface membrane whereas endocytosis involves the formation of vesicles from the cell surface membrane

Human lung adaptations

• Rate of diffusion is proportional to surface area - alveoli have a large surface area

• Rate of diffusion is proportional to difference in concentration breathing maintains a difference in gas concentrations

• Rate of diffusion is proportional to difference in concentration blood flow maintains a difference in gas concentrations

 Rate of diffusion is inversely proportional to diffusion distance
 walls of alveoli and capillaries are one cell thick

• Diffusion distance is reduced due to flattened cells forming alveoli and capillary walls

 Rate of diffusion is proportional to diffusion constant - cell membranes are relatively permeable to non-polar gas molecules

С

By no (hqneyroses)

cheatography.com/hqneyroses/

Human lung adaptations (cont)

Perfect exam answer (4-6 marks): The human lungs are adapted for gas exchange because the diffusion distance for gas exchange is reduced due to the flattened cells forming alveoli and capillary walls. The rate of diffusion is proportional to the surface area because the alveoli have a large surface area for gas exchange. Furthermore, the walls of the alveoli and capillaries are one cell thick so the rate of diffusion is inversely proportional to the diffusion distance and blood flow maintains a difference in gas concentrations.

NB: Fick's law states that the larger the surface area, difference in concentration and shorter the diffusion distance the quicker the rate. You need to remember this for these kinds of exam questions.

Sim + diff between fac. diffusion and AT

Similarity: Both facilitated diffusion and active transport use carrier/transport proteins Difference: Facilitated diffusion is a passive process that doesn't require ATP whereas active transport uses ATP for energy.

> Not published yet. Last updated 16th December, 2023. Page 4 of 6.

CP 3 - Bee	troot practic	al	Why is genetic screening used?		
Variables	Controls	Repeats	Results firm diagnos	sis	
	(how?)	(why?)	 for testing embryo 	S	
• IV:	•	• To	• to sidentify carriers		
temper-	Volume	calculate	temper-		
ature of	of	the	tRNA and mRNA		
the water (Celsius)	distilled water	permea- bility of the	the water tRNA increases,	mRNA	
		beetroot	_{१।fo} lded/clover	 straight 	
		membrane	le effort	folded	
			permea-	chain	
			-bislizye/length of	• size/l-	
			to Reve Aeiassess nstant	ength of	
• DV: %	Time left	in water		mRNA is	
transm-	insm-			variable	
ission of			 tRNA has 	• mRNA	
light through			anticodons/amino acid binding sites	has codons	
resulting	on		both contain RNA	mononucle-	
solution			otides		
using a cuvette			 both are single str 	anded	
0470110	· Size of h	eetroot piece			
	- SIZE UI D	eerroor hiece	Difference between	transcription	
			and replication		
			DNA Replic- Tr ation	ranscription	
			Replication	Transcription	

produces	produces a
double	single
stranded DNA	stranded RNA
molecules	molecule
 Replication 	 Transcription
involves DNA	involves RNA
nucleotides	nucleotides
 Replication 	 Transcription
uses DNA	requires RNA
polymerase	polymerase

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

genes and health Cheat Sheet by no (hqneyroses) via cheatography.com/196921/cs/41469/

Difference between transcription				
and replication (cont)				
 Replication 	 Transcription 			
produces	produces a			
identical complementary				

сору

Globular and fibrous proteins

copies

• Both globular and fibrous proteins are chains of amino acids joined by peptide bonds

• Both globular and fibrous proteins contain hydrogen/disulfide/ionic bonds

Globular	• Fibrous
proteins have	proteins have
hydrophillic	hydrophobic
groups on the	groups on the
outside	outside (insol-
(soluble)	uble)
• Globular	Fibrous
proteins have	proteins have
tertiary or	little to no
quaternary	tertiary
structures	structure
• Globular	Fibrous
proteins are	proteins have
folded into	long chains
compact	
shapes	

Compare and constrast deletion & substitution

• Deletion could affect every codon but substitution will only affect one codon.

cheatography.com/hqneyroses/

By **no** (hqneyroses)

Not published yet. Last updated 16th December, 2023. Page 5 of 6. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Compare and	constrast deletion
& substitution	(cont)

• Deletion is more likely to affect the position of the start codon/stop codon and results in a different sequence of amino acids whereas substitution may not affect the sequence of amino acids.

• Substitution may code for the same amino acid due to the degenerate nature of the genetic code.