Personal Math 26 Unit 1 Cheat Sheet
by hotwire via cheatography.com/122871/cs/22996/

Right Triangles	
Properties of Triangles	(1) the sum of the angles equals 180° AND (2) the combined length of any two side exceeds that of the third side AND (3) larger angles are opposite larger sides
Area	$(\mathrm{leg} * \operatorname{leg}) / 2$
Pythagorean Theorem	$\mathrm{leg}^{2}+\mathrm{leg}^{2}=$ hypotenuse 2
SOHCAHTOA	Sine Opposite Hypotenuse, Cosine Adjacent Hypotenuse, Tangent Opposite Adjecent
Special Triangles	$\begin{aligned} & \text { angles }=45-45-90 \text { OR } 30- \\ & 60-90 \end{aligned}$
45-45-90 Triangle	(1) the two legs are equal AND (2) the hypotenuse is $\sqrt{ } 2$ times the length of either leg
$\begin{aligned} & 30-60-90 \\ & \text { Triangle } \end{aligned}$	(1) the longer leg is $\sqrt{ } 3$ times the length of the shorter leg AND (2) the hypotenuse is 2 times the length of the shorter leg
Acute Triangle	contains three acute angles
Obtuse Triangle	contains exactly one obtuse angle
Equilateral Triangle	contains three side of equal length

Right Triangles (cont)	
Isosceles	contains two sides
Triangle	of equal length
Scalene	Contains no two
Triangle	sides are of the same length
Similar	when corres- Triangles ponding angles are equal, then corresponding sides are propor- tional

Circles	
Circum ference	$\pi \pi^{*}$ Diameter
Circum	2π Radius
ference	
Area	πr^{2}
Radian	the length of the arc on the unit circle $1^{\circ}=\pi / 180=\pi$ (degrees) radians $\pi / 180=$ radians has a radius of 1 and centered on a coordinate plane

Square Roots $\sqrt{ }$	
Quotient Property of Square Roots	$\begin{aligned} & \mathrm{Va} / \sqrt{\mathrm{b}}= \\ & \sqrt{\mathrm{a} / \mathrm{b}} \end{aligned}$
$\sqrt{1 / 4}=1 / 2$	
\checkmark-x	not a real number
$-\sqrt{x}$	real number

By hotwire
cheatography.com/hotwire/

