\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{HockeyPlay21} \pdfinfo{ /Title (data-mining.pdf) /Creator (Cheatography) /Author (HockeyPlay21) /Subject (Data Mining Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Data Mining Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{HockeyPlay21} via \textcolor{DarkBackground}{\uline{cheatography.com/36862/cs/11602/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}HockeyPlay21 \\ \uline{cheatography.com/hockeyplay21} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 30th April, 2017.\\ Updated 30th April, 2017.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Data Mining Steps}} \tn % Row 0 \SetRowColor{LightBackground} 1. Data Cleaning & Removal of noise and inconsistent records \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 2. Data Integration & Combing multiple sources \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} 3. Data Selection & Only data relevant for the task are retrieved from the database \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} 4. Data Transformation & Converting data into a form more appropriate for mining \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} 5. Data Mining & Application of intelligent methods to extract data patterns \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} 6. Model Evaluation & Identification of truly interesting patterns representing knowledge \tn % Row Count 16 (+ 3) % Row 6 \SetRowColor{LightBackground} 7. Knowledge Presentation & Visualization or other knowledge presentation techniques \tn % Row Count 19 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Data mining could also be called Knowledge Discovery in Databases (see kdnuggets.com)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.36 cm} x{6.64 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Types of Attributes}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Nomial} & e.g., ID numbers, eye color, zip codes \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{Ordinal} & e.g., rankings, grades, height \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \seqsplit{Interval} & e.g., calendar dates, temperatures \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Ratio & e.g., length, time, counts \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Distance Measures}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hockeyplay21_1493565206_Distance.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Manhattan = City Block \newline \newline Jaccard coefficient, Hamming, Cosine are a similarity / dissimilarity measures} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Measures of Node Impurity}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hockeyplay21_1493266681_Impurity.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Model Evaluation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hockeyplay21_1493271522_ModelEval.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Kappa = (observed agreement - chance agreement) / (1- chance agreement) \newline \newline Kappa = (Dreal – Drandom) / (Dperfect – Drandom), where D indicates the sum of values in diagonal of the confusion matrix} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{K-Nearest Neighbor}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{ Compute distance between two points \newline \newline }} Determine the class from nearest neighbor list \newline {\emph{ Take the majority vote of class labels \newline among the k-nearest neighbors \newline \newline }} Weigh the vote according to distance \newline * weight factor, w = 1 / d\textasciicircum{}2} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Rule-based Classification}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Classify records by using a collection of \newline % Row Count 1 (+ 1) "if…then…" rules \newline % Row Count 2 (+ 1) {\bf{Rule:}} (Condition) -{}-\textgreater{} y \newline % Row Count 3 (+ 1) {\emph{where:}} \newline % Row Count 4 (+ 1) * Condition is a conjunction of attributes \newline % Row Count 5 (+ 1) * y is the class label \newline % Row Count 6 (+ 1) {\bf{LHS:}} rule antecedent or condition \newline % Row Count 7 (+ 1) {\bf{RHS:}} rule consequent \newline % Row Count 8 (+ 1) {\bf{Examples of classification rules:}} \newline % Row Count 9 (+ 1) (Blood Type=Warm) \textasciicircum{} (Lay Eggs=Yes) -{}-\textgreater{} Birds \newline % Row Count 10 (+ 1) (Taxable Income \textless{} 50K) \textasciicircum{} (Refund=Yes) -{}-\textgreater{} Evade=No \newline % Row Count 12 (+ 2) Sequential covering is a rule-based classifier.% Row Count 13 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Rule Evaluation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hockeyplay21_1493267726_RuleEval.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Bayesian Classification}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hockeyplay21_1493268606_Bayes.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{p(a,b) is the probability that both a and b happen. \newline \newline p(a|b) is the probability that a happens, knowing that b has already happened.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Terms}} \tn % Row 0 \SetRowColor{LightBackground} Association Analysis & Min-Apriori, LIFT, Simpson's Paradox, Anti-monotone property \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Ensemble Methods & Staking, Random Forest \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} Decision Trees & C4.5, Pessimistic estimate, Occam's Razor, Hunt's Algorithm \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} Model Evaluation & Cross-validation, Bootstrap, Leave-one out (C-V), Misclassification error rate, Repeated holdout, Stratification \tn % Row Count 14 (+ 6) % Row 4 \SetRowColor{LightBackground} Bayes & Probabilistic classifier \tn % Row Count 16 (+ 2) % Row 5 \SetRowColor{white} Data Visualization & Chernoff faces, Data cube, Percentile plots, Parallel coordinates \tn % Row Count 20 (+ 4) % Row 6 \SetRowColor{LightBackground} Nonlinear Dimensionality Reduction & Principal components, ISOMAP, Multidimensional scaling \tn % Row Count 23 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Ensemble Techniques}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hockeyplay21_1493270652_Ensemble.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Manipulate training data:}} bagging and boosting ensemble of "experts", each specializing on different portions of the instance space \newline \newline {\bf{Manipulate output values:}} error-correcting output coding (ensemble of "experts", each predicting 1 bit of the \{multibit\} full class label) \newline \newline {\bf{Methods:}} BAGGing, Boosting, AdaBoost} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Rules Analysis}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hockeyplay21_1493273003_RuleAnaly.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Apriori Algorithm}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Let k=1 \newline \newline Generate frequent itemsets of length 1 \newline \newline Repeat until no new frequent itemsets are identified \newline \newline Generate length (k+1) candidate itemsets from \newline length k frequent itemsets \newline \newline Prune candidate itemsets containing subsets \newline of length k that are infrequent \newline \newline Count the support of each candidate by \newline scanning the DB \newline \newline Eliminate candidates that are infrequent, \newline leaving only those that are frequent} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{K-means Clustering}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Select K points as the initial centroids \newline \newline {\bf{repeat}} \newline Form K Clusters by assigning all points to the closest centroid \newline \newline Recompute the centroid of each cluster \newline \newline {\bf{until}} the centroids don't change} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Closeness}} is measured by distance (e.g., Euclidean), similarity (e.g., Cosine), correlation. \newline \newline {\bf{Centroid}} is typically the mean of the points in the cluster} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Hierarchical Clustering}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Single-Link or MIN}} \newline % Row Count 1 (+ 1) Similarity of two clusters is based on the two most similar (closest / minimum) points in the different clusters \newline % Row Count 4 (+ 3) Determined by one pair of points, i.e., by one link in the proximity graph. \newline % Row Count 6 (+ 2) {\bf{Complete or MAX}} \newline % Row Count 7 (+ 1) Similarity of two clusters is based on the two least similar (most distant, maximum) points in the different clusters \newline % Row Count 10 (+ 3) Determined by all pairs of points in the two clusters \newline % Row Count 12 (+ 2) {\bf{Group Average}} \newline % Row Count 13 (+ 1) Proximity of two clusters is the average of pairwise proximity between points in the two clusters% Row Count 15 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Agglomerative}} clustering starts with points as individual clusters and merges closest clusters until only one cluster left. \newline \newline {\bf{Divisive}} clustering starts with one, all-inclusive cluster and splits a cluster until each cluster only has one point.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Dendrogram Example}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hockeyplay21_1493565164_Dendrogram.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Dataset:}} \{7, 10, 20, 28, 35\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Density-Based Clustering}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{current\_cluster\_label \textless{}-{}- 1 \newline \newline {\bf{for}} all core points {\bf{do}} \newline {\bf{if}} the core point has no cluster label {\bf{then}} \newline current\_cluster\_label \textless{}-{}- current\_cluster\_label +1 \newline Label the current core point with the cluster label \newline {\bf{end if}} \newline {\bf{for}} all points in the Eps-neighborhood, except i-th the point itself {\bf{do}} \newline {\bf{if}} the point does not have a cluster label {\bf{then}} \newline Label the point with cluster label \newline {\bf{end if}} \newline {\bf{end for}} \newline {\bf{end for}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{DBSCAN is a popular algorithm \newline \newline Density = number of points within a specified radius (Eps) \newline \newline A point is a core point if it has more than a specified number of points (MinPts) within Eps \newline \newline These are points that are at the interior of a cluster \newline \newline A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point \newline \newline A noise point is any point that is not a core point or a border point} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Other Clustering Methods}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Fuzzy}} is a partitional clustering method. {\bf{Fuzzy clustering}} (also referred to as {\bf{soft clustering}}) is a form of clustering in that each data point can belong to more than one cluster. \newline % Row Count 4 (+ 4) {\bf{Graph-based}} methods: Jarvis-Patrick, Shared-Near Neighbor (SNN, Density), Chameleon \newline % Row Count 6 (+ 2) {\bf{Model-based}} methods: Expectation-Maximization% Row Count 7 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Regression Analysis}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{* Linear Regression \newline % Row Count 1 (+ 1) ~~|~Least squares \newline % Row Count 2 (+ 1) * Subset selection \newline % Row Count 3 (+ 1) * Stepwise selection \newline % Row Count 4 (+ 1) * Regularized regression \newline % Row Count 5 (+ 1) ~~|~Ridge \newline % Row Count 6 (+ 1) ~~|~Lasso \newline % Row Count 7 (+ 1) ~~|~Elastic Net% Row Count 8 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Anomaly Detection}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Anomaly is a pattern in the data that does not conform to the expected behavior (e.g., outliers, exceptions, peculiarities, surprise) \newline % Row Count 3 (+ 3) {\bf{Types of Anomaly}} \newline % Row Count 4 (+ 1) ~~{\emph{Point:}} An individual data instance is anomalous w.r.t. the data \newline % Row Count 6 (+ 2) ~~{\emph{Contextual:}} An individual data instance is anomalous within a context \newline % Row Count 8 (+ 2) ~~{\emph{Collective:}} A collection of related data instances is anomalous \newline % Row Count 10 (+ 2) {\bf{Approaches}} \newline % Row Count 11 (+ 1) ~~* Graphical (e.g., boxplots, scatter plots) \newline % Row Count 13 (+ 2) ~~* Statistical (e.g., normal distribution, likelihood) \newline % Row Count 15 (+ 2) ~~~~| Parametric Techniques \newline % Row Count 16 (+ 1) ~~~~| Non-parametric Techniques \newline % Row Count 18 (+ 2) ~~* Distance (e.g., nearest-neighbor, density, clustering)% Row Count 20 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Local outlier factor (LOF)}} is a density-based distance approach \newline \newline {\bf{Mahalanobis Distance}} is a clustering-based distance approach} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}