Data Mining Steps

1. **Data Cleaning**
 - Removal of noise and inconsistent records

2. **Data Integration**
 - Combing multiple sources

3. **Data Selection**
 - Only data relevant for the task are retrieved from the database

4. **Data Transformation**
 - Converting data into a form more appropriate for mining

5. **Data Mining**
 - Application of intelligent methods to extract data patterns

6. **Model Evaluation**
 - Identification of truly interesting patterns representing knowledge

7. **Knowledge Presentation**
 - Visualization or other knowledge presentation techniques

Data mining could also be called Knowledge Discovery in Databases (see kdnuggets.com)

Types of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>e.g., ID numbers, eye color, zip codes</td>
</tr>
<tr>
<td>Ordinal</td>
<td>e.g., rankings, grades, height</td>
</tr>
<tr>
<td>Interval</td>
<td>e.g., calendar dates, temperatures</td>
</tr>
<tr>
<td>Ratio</td>
<td>e.g., length, time, counts</td>
</tr>
</tbody>
</table>

Distance Measures

Euclidean Distance:

$$\text{dist} = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Minkowski Distance:

$$\text{dist} = \left(\sum_{k=1}^{n} |p_k - q_k|^r \right)^{\frac{1}{r}}$$

- $r=1$, City Block
- $r=2$, Euclidean
- $r\to\infty$, Chebyshev

Manhattan = City Block

Jaccard coefficient, Hamming, Cosine are a similarity / dissimilarity measures
Measures of Node Impurity

GAIN = measure before split – measure after split

\[
GINI(t) = 1 - \sum_{j} \left(\frac{[p(j \mid t)]}{n} \right)^2
\]

\(p(j \mid t) \) is the relative frequency of class \(j \) at node \(t \)

\[
GINI_{\text{split}} = \sum_{i} \frac{n_i}{n} GINI(i)
\]

where, \(n_i \) = number of records at child \(i \), \(n \) = number of records at node \(p \).

Pick the smallest

Entropy

\[
Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)
\]

Information Gain:

\[
GAIN_{\text{info}} = \text{Entropy}(t) - \left(\frac{1}{n} \sum_{i} \frac{n_i}{n} \text{Entropy}(i) \right)
\]

Parent Node, \(p \) is split into \(k \) partitions;
\(n_i \) is number of records in partition \(i \)

GainRATIO = \(\frac{GAIN_{\text{info}}}{\text{SplitINFO}} \)

SplitINFO = \(-\frac{1}{n} \sum_{i} \frac{n_i}{n} \log \frac{n_i}{n} \)

Parent Node, \(p \) is split into \(k \) partitions;
\(n_i \) is number of records in partition \(i \)

Error

\[
Error(t) = 1 - \max P(i \mid t)
\]

Model Evaluation

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>Class=Yes</td>
</tr>
<tr>
<td>Class=No</td>
<td>Class=Yes</td>
</tr>
<tr>
<td>a (TP)</td>
<td>b (FN)</td>
</tr>
<tr>
<td>c (FP)</td>
<td>d (TN)</td>
</tr>
</tbody>
</table>

Accuracy = \(\frac{TP + TN}{TP + FN + FP + TN} \)

Precision = \(\frac{TP}{TP + FP} \)

Recall = \(\frac{TP}{TP + FN} \)

F-measure = \(\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \)

Cost = \(TP \times \text{Cost}_{TP} + FN \times \text{Cost}_{FN} + TN \times \text{Cost}_{TN} + FP \times \text{Cost}_{FP} \)

Sensitivity = \(\text{Recall} \)

Specificity = \(1 - \frac{FP}{FP + TN} = \frac{TN}{TN + FP} \)

False Positive Rate = \(1 - \text{Specificity} \)

Kappa = \(\frac{\text{observed agreement} - \text{chance agreement}}{(1 - \text{chance agreement})} \)

Kappa = \(\frac{D_{\text{real}} - D_{\text{random}}}{D_{\text{perfect}} - D_{\text{random}}} \), where \(D \) indicates the sum of values in diagonal of the confusion matrix

K-Nearest Neighbor

* Compute distance between two points
* Determine the class from nearest neighbor list
 * Take the majority vote of class labels among the \(k \)-nearest neighbors
 * Weigh the vote according to distance
K-Nearest Neighbor (cont)

* weight factor, \(w = \frac{1}{d^2} \)

Rule-based Classification

Classify records by using a collection of “if…then…” rules

Rule: (Condition) \(\rightarrow y \)

where:

* Condition is a conjunction of attributes
* \(y \) is the class label

LHS: rule antecedent or condition

RHS: rule consequent

Examples of classification rules:

(Blood Type=Warm) \(^\wedge \) (Lay Eggs=Yes) \(\rightarrow \) Birds

(Taxable Income < 50K) \(^\wedge \) (Refund=Yes) \(\rightarrow \) Evade=No

Sequential covering is a rule-based classifier.

Bayesian Classification

Conditional Probability:

\[
P(C \mid A) = \frac{P(A \mid C) P(C)}{P(A)}
\]

Bayes' theorem:

\[
P(C \mid A) = \frac{P(A \mid C) P(C)}{P(A)}
\]

Naive Bayes Classifier:

Original: \(P(A_i \mid C) = \frac{N_{i,c}}{N_c} \)

Laplace: \(P(A_i \mid C) = \frac{N_{i,c} + 1}{N_c + E} \)

m-estimate: \(P(A_i \mid C) = \frac{N_{i,c} + \lambda p}{N_c + \lambda} \)

\(c \): number of classes, \(p \): prior probability, \(m \): parameter

P(B|A), read as the probability of B given A.

\[
P(B \mid A) = \frac{P(A \text{ and } B)}{P(A)} = \frac{P(A \text{ and } B)}{P(A)}
\]

\(p(a,b) \) is the probability that both \(a \) and \(b \) happen.

\(p(\text{lab}) \) is the probability that a happens, knowing that \(b \) has already happened.

Terms

Association

Min-Apriori, LIFT, Simpson's Paradox, Anti-monotone property

Analysis

Ensemble Methods

Staking, Random Forest

Published 30th April, 2017.
Last updated 30th April, 2017.
Decision Trees
- C4.5, Pessimistic estimate, Occam's Razor, Hunt's Algorithm

Model Evaluation
- Cross-validation, Bootstrap, Leave-one out (C-V), Misclassification error rate, Repeated holdout, Stratification

Bayes
- Probabilistic classifier

Data Visualization
- Chernoff faces, Data cube, Percentile plots, Parallel coordinates

Nonlinear Dimensionality Reduction
- Principal components, ISOMAP, Multidimensional scaling

Ensemble Techniques

AdaBoost Algorithm:
\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]

- Error \(\epsilon_t \) = # of misclassified divided by total

- \(w_1 = w_1 = w_2 = \cdots = w_{10} = \frac{1}{10} = 0.1 \)

- Re-weighting:
 - Misclassified = \(w_i \times e^{-\alpha_t} \)
 - Correct classified = \(w_i \times e^{\alpha_t} \)

Manipulate training data:
- Bagging and boosting ensemble of "experts", each specializing on different portions of the instance space

Manipulate output values:
- Error-correcting output coding (ensemble of "experts", each predicting 1 bit of the [multibit] full class label)

Methods:
- BAGGing, Boosting, AdaBoost

Rules Analysis

Apriori Algorithm

Let \(k=1 \)

1. Generate frequent itemsets of length 1
2. Repeat until no new frequent itemsets are identified
 - Generate length \((k+1)\) candidate itemsets from length \(k\) frequent itemsets
 - Prune candidate itemsets containing subsets of length \(k\) that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Lift
\[
Lift = \frac{\text{Confidence}}{\text{P}(B)}
\]

Example:
- Rule \((b) \rightarrow (c) \)

<table>
<thead>
<tr>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Support = \(\frac{3}{10} = 0.3 \)
- Confidence = \(\frac{3}{7} = 0.4286 \)
- Lift = \(\frac{3/7}{3/10} \)

By HockeyPlay21

Published 30th April, 2017.
Last updated 30th April, 2017.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com
K-means Clustering

Select K points as the initial centroids

repeat

Form K Clusters by assigning all points to the closest centroid

Recompute the centroid of each cluster

until the centroids don't change

Closeness is measured by distance (e.g., Euclidean), similarity (e.g., Cosine), correlation.

Centroid is typically the mean of the points in the cluster

Hierarchical Clustering

Single-Link or MIN

Similarity of two clusters is based on the two most similar (closest / minimum) points in the different clusters

Determined by one pair of points, i.e., by one link in the proximity graph.

Complete or MAX

Similarity of two clusters is based on the two least similar (most distant, maximum) points in the different clusters

Determined by all pairs of points in the two clusters

Group Average

Proximity of two clusters is the average of pairwise proximity between points in the two clusters

Agglomerative clustering starts with points as individual clusters and merges closest clusters until only one cluster left.

Divisive clustering starts with one, all-inclusive cluster and splits a cluster until each cluster only has one point.

Density-Based Clustering

```python
current_cluster_label <-- 1
for all core points do
  if the core point has no cluster label then
    current_cluster_label <-- current_cluster_label + 1
    Label the current core point with the cluster label
  end if
  for all points in the Eps-neighborhood, except i-th the point itself do
    if the point does not have a cluster label
      Label the point with cluster label
    end if
  end for
end for
```

Dataset: [7, 10, 20, 28, 35]
Density-Based Clustering (cont)

DBSCAN is a popular algorithm

Density = number of points within a specified radius (Eps)

A point is a core point if it has more than a specified number of points (MinPts) within Eps

These are points that are at the interior of a cluster

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point

A noise point is any point that is not a core point or a border point

Other Clustering Methods

Fuzzy is a partitional clustering method. Fuzzy clustering (also referred to as soft clustering) is a form of clustering in that each data point can belong to more than one cluster.

Graph-based methods: Jarvis-Patrick, Shared-Near Neighbor (SNN, Density), Chameleon

Model-based methods: Expectation-Maximization

Regression Analysis (cont)

Regression Analysis

* Linear Regression
 | Least squares
* Subset selection
* Stepwise selection
* Regularized regression
 | Ridge
 | Lasso

Anomaly Detection

Anomaly is a pattern in the data that does not conform to the expected behavior (e.g., outliers, exceptions, peculiarities, surprise)

Types of Anomaly

Point: An individual data instance is anomalous w.r.t. the data

Contextual: An individual data instance is anomalous within a context

Collective: A collection of related data instances is anomalous

Approaches

* Graphical (e.g., boxplots, scatter plots)
 | Parametric Techniques
 | Non-parametric Techniques
* Statistical (e.g., normal distribution, likelihood)

Local outlier factor (LOF) is a density-based distance approach

Mahalanobis Distance is a clustering-based distance approach

Regression Analysis

* Linear Regression
 | Least squares
* Subset selection
* Stepwise selection
* Regularized regression
 | Ridge
 | Lasso

By HockeyPlay21
cheatography.com/hockeyplay21/