\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{hildana} \pdfinfo{ /Title (nervous-system.pdf) /Creator (Cheatography) /Author (hildana) /Subject (Nervous System Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{4380A3} \definecolor{LightBackground}{HTML}{F3F7F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Nervous System Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{hildana} via \textcolor{DarkBackground}{\uline{cheatography.com/213558/cs/46472/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}hildana \\ \uline{cheatography.com/hildana} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 27th May, 2025.\\ Updated 28th May, 2025.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{TERMS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Autonomic Ganglia}} - clusters of neuron cell bodies that relay sensory signals from the body's periphery to the central nervous system (CNS) integration centers} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Diffusion}} - the process of movement of molecules under a concentration gradient} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Neurons}} - pecialized nerve cells designed to transmit electrical signals over long distances} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Membrane Potential}} - a separation of opposite charges across the plasma membrane} \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Leak Channels}} - permit ions to flow down concentration gradients} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Concentration Gradient}} - Na+/K+ ATPase establishes the unequal distribution of Na+ and K+ ions inside and outside of the cell} \tn % Row Count 15 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Depolarization}} - change in membrane polarization to more positive values than resting membrane potential} \tn % Row Count 18 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Hyperpolarization}} - change in membrane polarization to more negative values than resting membrane potential} \tn % Row Count 21 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Action Potential}} - a rapid, all-or-nothing reversal in membrane potential (spike), lasting about 1 millisecond, hat is brought about by rapid changes in membrane permeability to Na+ and K+ ions} \tn % Row Count 25 (+ 4) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Repolarization}} - return to resting membrane potential after depolarization} \tn % Row Count 27 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Propagation}} occurs when an AP spreads as the locally generated depolarizing current moves to adjacent regions of the membrane causing it to depolarize} \tn % Row Count 31 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{TERMS (cont)}} \tn % Row 11 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Myelin}} - multilayered sheath made of plasma membrane, produced by specialized glial cells, that wraps around axonal fibers. It serves as an insulator, facilitating the efficient flow of electrical signals} \tn % Row Count 5 (+ 5) % Row 12 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Graded Potentials}} - ocal changes in membrane potential that decrease in strength as they travel over short distances. The magnitude of a graded potential typically correlates with the size of the stimulus.} \tn % Row Count 10 (+ 5) % Row 13 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Synapse}} - junction between two neurons, or between a neuron and a muscle or gland that enables one cell to electrically and/or biochemically influence another cell} \tn % Row Count 14 (+ 4) % Row 14 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Convergence}} - the synaptic input of many neurons onto one neuron} \tn % Row Count 16 (+ 2) % Row 15 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Divergence}} - the synaptic output of one neuron onto many neurons} \tn % Row Count 18 (+ 2) % Row 16 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Synaptic transmission}} - the primary means of rapid inter- neuronal communication in the brain} \tn % Row Count 20 (+ 2) % Row 17 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Thalamus}} - sensory relay station and is important in motor control} \tn % Row Count 22 (+ 2) % Row 18 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Hypothalamus}} - regulates many homeostatic functions (Circadian rhythms, thermoregulation)} \tn % Row Count 24 (+ 2) % Row 19 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Brain Stem}} - vital link between the spinal cord and higher brain regions} \tn % Row Count 26 (+ 2) % Row 20 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Sensory System}} - 6 major sensory systems in the mammalian brain, each is organized according to a common anatomical plan.} \tn % Row Count 29 (+ 3) % Row 21 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Receptors}} - stimuli are transduced by receptors grouped together to form a sensory surface} \tn % Row Count 31 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{TERMS (cont)}} \tn % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Transduction}} - the conversion of stimulus energy to a neuronal signal} \tn % Row Count 2 (+ 2) % Row 23 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Auditory Receptors}} - hair cells located in cochlea} \tn % Row Count 4 (+ 2) % Row 24 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Somatosensory Receptors}} - specific receptors for different modalities/sensations} \tn % Row Count 6 (+ 2) % Row 25 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Lateral Inhibition}} - inhibition of adjacent neurons in a map; facilitates localization of stimuli/sharpen contrast} \tn % Row Count 9 (+ 3) % Row 26 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Spinal Cord}} - each segment contains motor neurons that project to specific skeletal muscles on the same (ipsilateral) side of the body, via ventral roots} \tn % Row Count 13 (+ 4) % Row 27 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Neuromuscular Junction}} - motor neurons and skeletal muscle fibers are chemically linked at} \tn % Row Count 15 (+ 2) % Row 28 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Spinal Reflexes}} - simple neuromuscular circuits that mediate reflex responses to sensory stimuli} \tn % Row Count 17 (+ 2) % Row 29 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Central Motor System}} - system of neural structures that carry out specific controls of the skeletal musculature} \tn % Row Count 20 (+ 3) % Row 30 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Limbic System }} - roup of cortical and subcortical structures that form an imprecise ring around the thalamus, playing a key role in emotion, motivation, learning, and memory.} \tn % Row Count 24 (+ 4) % Row 31 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Amygdala}} - cluster of nuclei at the front of the hippocampus; receives input and output to various subcortical and cortical structures. It plays a crucial role in regulating emotional responses, especially fear} \tn % Row Count 29 (+ 5) % Row 32 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Hippocampus}} - an elongated cortical structure located within the temporal lobe. It is anatomically linked to other parts of the limbic system and the cerebral cortex. It plays a key role in memory formation, spatial navigation, and can also be involved in epileptic activity} \tn % Row Count 35 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Organization of the Nervous System}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Protection of CNS from injury}}: Cranium and vertebral column, Meninges, Cerebrospinal Fluid, Blood-Brain Barrier} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Brain depends on constant delivery of oxygen + glucose by the blood} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Central Nervous System (CNS)}} -{}-\textgreater{} Subconsciously regulate homeostatic responses; Experience emotions; Voluntarily control movements; Be aware of body and surroundings; Engage in other higher cognitive processes} \tn % Row Count 10 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Components of the Brai}} = Forebrain (Cereburm (Cerebral Cortex + Basal Nuclei/Ganglia) ; Diencephalon (Hypothalamus + Thalamus)), Cerebellum, and Brain Stem} \tn % Row Count 14 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Cerebral Cortex}}: Organized into layer and functional columns} \tn % Row Count 16 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Frontal Lobe}} -{}-\textgreater{} Primary Motor Cortex ; {\bf{Parietal Lobe}} -{}-\textgreater{} Somatosensory Cortex ; {\bf{Occipital Lobe}} -{}-\textgreater{} Primary Visual Cortex ; {\bf{Temporal Lobe}} -{}-\textgreater{} Primary Auditory Cortex} \tn % Row Count 20 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Thalamus}} = "Relay station" for preliminary processing of sensory input} \tn % Row Count 22 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Hypothalamus}} = collection of specific nuclei + associated fibers that lie beneath thalamus; integrating center importnat for homeostatic functions} \tn % Row Count 25 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Circadian Clock (24hr Rhythms)}} -{}-\textgreater{} Suprachiasmatic Nucleus (SCN); Body Temperature, Sleep-Wake, Blood Pressure, Hormone Levels} \tn % Row Count 28 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Brain Stem}} -{}-\textgreater{} consist of midbrain, pons, and medulla.; MOST cranial nerves arise; regulate equilibrium and postural reflexes; cortical alertness; centers that govern sleep} \tn % Row Count 32 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Lobes of Cerebral Cortex}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hildana_1748361497_Screenshot 2025-05-27 at 8.55.46 AM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Thalamus + Hypothalamus}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hildana_1748361577_Screenshot 2025-05-27 at 8.58.52 AM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Diffusion + Membrane Potential}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Diffusion Through Membrane}} -{}-\textgreater{} Net movement due to random collisions between molecules ; Diffusion down a concentration Gradient} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Rate of Diffusion Depends On}}: (1) Magnitude:↑ concentration gradient, ↑ rate of diffusion (2) Permeability: ↑permeability, ↑rate of diffusion (3) Surface Area: ↑surface area, ↑ rate of diffusion (4) Molecular Weight: ↑ molecular weight, ↓ rate of diffusion (5) Distance: ↑ distance , ↓ rate of diffusion} \tn % Row Count 10 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Nonpolor Molecules}} (O\textasciitilde{}2\textasciitilde{}, CO\textasciitilde{}2\textasciitilde{}, fatty acids) = Chemical Gradient {\bf{Small Ions}} (Na+, K+, Ca\textasciicircum{}2+\textasciicircum{}, Cl\textasciicircum{}-\textasciicircum{}) = {\emph{Chemical Gradient + Electrical Gradient}} = electrochemical Gradient} \tn % Row Count 14 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Plasma membranes of ALL living cells have a {\bf{membrane potential (Vm)}}/polarized electrically} \tn % Row Count 16 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Across Membrane}}, most fluid is electrically neutral; separated charges forming a layer along plasma membrane} \tn % Row Count 19 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{GREATER}} the separation of charges across membrane -{}-\textgreater{}{\bf{ LARGER }}the potential} \tn % Row Count 21 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Equilibrium Potential for K\textasciicircum{}+\textasciicircum{} }}-{}-\textgreater{} (1) K\textasciicircum{}+\textasciicircum{} tends to move out of the cell (2) Outside of the cell becomes more positive (3) Electrical gradient tends to move K\textasciicircum{}+\textasciicircum{} into the cell (4) Electrical gradient counterbalances concentration gradient (5) No further net movement of K\textasciicircum{}+\textasciicircum{} occurs (6) E\textasciitilde{}K\textasciicircum{}+\textasciicircum{}\textasciitilde{} = -90mV} \tn % Row Count 28 (+ 7) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Equilibrium Potential for Na\textasciicircum{}+\textasciicircum{}}} -{}-\textgreater{} (1) Na\textasciicircum{}+\textasciicircum{} tends to move into the cell (2) Inside of the cell becomes more positive (3) Electrical gradient tends to move Na\textasciicircum{}+\textasciicircum{} out of the cell (4) Electrical gradient counterbalances concentration gradient (5) No further net movement of Na\textasciicircum{}+\textasciicircum{} occurs (6) E\textasciitilde{}Na\textasciicircum{}+\textasciicircum{}\textasciitilde{} = +60mV} \tn % Row Count 35 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Diffusion + Membrane Potential (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Resting Membrane Potential (-70mV)}}: Membrane more permeable to K\textasciicircum{}+\textasciicircum{} than Na\textasciicircum{}+\textasciicircum{}; Large; Large net diffusion of K\textasciicircum{}+\textasciicircum{} and Small net diffusion of Na\textasciicircum{}+\textasciicircum{}} \tn % Row Count 4 (+ 4) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Na/K ATPase}} -{}-\textgreater{} Establishes and maintains concentration gradient ; Pumps {\emph{3 Na\textasciicircum{}+\textasciicircum{} OUT of the cell}} for every {\emph{2 K\textasciicircum{}+\textasciicircum{} pumped INTO the cell}} = {\bf{Na\textasciicircum{}+\textasciicircum{} is higher outside}} the cell and {\bf{K\textasciicircum{}+\textasciicircum{} is higher inside}} of the cell} \tn % Row Count 9 (+ 5) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Na\textasciicircum{}+\textasciicircum{} = {\bf{LOW}} intracellular concentration K\textasciicircum{}+\textasciicircum{} = {\bf{HIGH}} intracellular concentration} \tn % Row Count 11 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Resting Potential}} neither K\textasciicircum{}+\textasciicircum{} nor Na\textasciicircum{}+\textasciicircum{} is at equilibrium potentials and remain constant at resting state.} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Vision}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Sensory Motor Transformation}} (cycle): Brain -{}-\textgreater{} Motor Outputs -{}-\textgreater{} Body -{}-\textgreater{} Sensory Inputs -{}-\textgreater{} Brain} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Organization}}: Receptor -{}-\textgreater{} Relay Nuclei -{}-\textgreater{} Thalamus -{}-\textgreater{} Primary Cerebral Cortex -{}-\textgreater{} Secondary Cerebral Cortex} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Retina}}: photoreceptors, bipolar cells, ganglion cells, horizontal cells, amacrine cells; light passes theough retina before contract with photoreceptors in the back of the eye} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Blind Spot}} = Optic Disc} \tn % Row Count 11 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Macula}} = Location of Fovea; bipolar and ganglion cell layers are pulled aside so light strikes photoreceptors directly} \tn % Row Count 14 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Phototransduction}} -{}-\textgreater{} (1) Light activates rhodopsinRhodopsin activation causes the cGMP phosphodiesterase activation (3) Rhodopsin activation decreases cGMP, closes cGMP-gated Na+ channel (4) Membrane hyperpolarizes} \tn % Row Count 19 (+ 5) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Photoreceptors: {\bf{Rods}}-{}-\textgreater{} sensitive to very low light, LOW acuity + peripheral vision, and do not distinguish between different wavelengths of light; {\bf{Cones}}-{}-\textgreater{} sensitive to bright light; HIGH acuity in central field vision (fovea); distinguish between different wavelengths of light} \tn % Row Count 25 (+ 6) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Color Perception}} -{}-\textgreater{} Blue, Green, and Red Cone} \tn % Row Count 26 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Optics of Eye}} - lens inverts and focuses the visual stimulus onto the surface of the retina} \tn % Row Count 28 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Thermosensation/Nociception}} -{}-\textgreater{} Prevents us from being burned; influence decisions about environment and clothing} \tn % Row Count 31 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Auditory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{External Ear}} - pinna, external auditory meatus, tympanic membrane} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Middle Ear}} - tympanic membrane, ossicles, oval window} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Inner Ear}} - oval window, cochlea, vestibular apparatus, round window} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Mechanograph}} is a stretch receptor that respond to mechanical pressure or distortion; Stretch/Open = Depolarize AND Loosen/Close = Hyperpolarize} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Sound Transduction}}: Sound Waves -{}-\textgreater{} Vibration of Tympanic Membrane -{}-\textgreater{} Vibration of Middle Ear Bones -{}-\textgreater{} Vibration of Oval Window -{}-\textgreater{} Fluid Movement within the Cochlea -{}-\textgreater{} Vibration of Basilar Membrane -{}-\textgreater{} Bending of Hair Cells -{}-\textgreater{} Graded Receptor Potential -{}-\textgreater{} Action Potentials Generated in Auditory Nerve -{}-\textgreater{} Propagation to Auditory Cortex} \tn % Row Count 16 (+ 7) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Auditory Discrimination}}: {\emph{Pitch}} discrimination depends on the region of the basilar membrane that vibrates (where) ; {\emph{Loudness}} discrimination depends on the amplitude of vibration of the basilar membrane (how much)} \tn % Row Count 21 (+ 5) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Somatosensory Receptors}} -{}-\textgreater{} Touch (Mechanoreceptors), Pain (Nociceptors), Temperature (Thermoreceptors), and Proprioception (Mechanoreceptors)} \tn % Row Count 24 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Touch}} - {\bf{Tonic Receptor}} = don't adapt/adapt slowly and sustain pressure and stretch of the skin ; {\bf{Phasic Receptor}} = adapt rapidly, off response, and signal changes in pressure on the skin surface} \tn % Row Count 29 (+ 5) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Receptive Field}} - each sensory neurons respond to stimulus information only within a restrictive/specific area} \tn % Row Count 32 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Auditory (cont)}} \tn % Row 9 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Acuity (discriminative ability)}} INFLUENCED by (1) Density of receptors (2) Receptive Field Size (3) Lateral Inhibition} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Higher Brain Functions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Language Areas}} areas of the cerebral cortex, predominantly located in the left hemisphere in about 97\% of people, responsible for language processing and production} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Wernicke's Area}} located ventrally and posteriorly to the auditory cortex, it integrates input from the auditory, visual, and somatosensory cortices; damage to this area leads to impaired language comprehension.} \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Broca's Area}} is located in the ventral and posterior part of the left frontal lobe, it sends signals to motor regions of the cortex; damage to this area causes difficulties with speech production} \tn % Row Count 13 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{PERSONALITY -{}-\textgreater{} {\bf{Prefrontal Association Areas}} are in the frontal lobe, in front of the premotor regions, receiving input and sending output to various regions of the cerebral cortex; Damage to this area can lead to impairments in planning, personality, and social behavior} \tn % Row Count 19 (+ 6) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Phineas Gage}} had a tamping iron through his head and most of the front part of his left side of his brain was destroyed. {\bf{Deficits}}: (1) socially unacceptable behavior (2) Unfocused (3) Lack of planning} \tn % Row Count 24 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Walter Freeman}} -{}-\textgreater{} {\emph{"Ice-pick lobotomy"}}; He used a transorbital approach to the prefontal cortex using an ice pick and a hammer. Performed under local anesthesia. The ice pick would perforate skin, subcutaneous tissue, bone and meninges in a single plunge; and then Freeman would swing it to severe the prefrontal lobe. (later seen as inhumane)} \tn % Row Count 31 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Higher Brain Functions (cont)}} \tn % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Patient HM}} - removal of hippocampus to treat intractable epilepsy -{}-\textgreater{} RESULT: {\bf{Total Anterograde Amnesia}}= couldn't form new long-term memories; slight display of retrograde amnesia= old memories until the age of the accident} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Action Potentials}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/hildana_1748331305_Screenshot 2025-05-27 at 12.31.49 AM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Action Potential (cont'd)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Rising Phase (Depolarization) = membrane polarization more POSITIVE} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Voltage gated Na\textasciicircum{}+\textasciicircum{} Channel}} -{}-\textgreater{} opens quickly (\textless{} .5 ms) in response to depolarization, allowing Na\textasciicircum{}+\textasciicircum{} to flow down its electrochemical gradient into the cell (rising phase of AP)} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Falling Phase (Repolarization) = return to membrane potential after depolarization} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Voltage gated K\textasciicircum{}+\textasciicircum{} Channel}} -{}-\textgreater{} opens more slowly in response to depolarization, allowing K\textasciicircum{}+\textasciicircum{} ions to flow out of the cell down their electrochemical gradient. (falling phase of AP + after hyperpolarization))} \tn % Row Count 13 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{AP Propagation}}-{}-\textgreater{} Contiguous Conduction: propagation of action potentials in unmyelinated fibers by spread of locally generated depolarizing current to adjacent regions of membrane, causing it to depolarize; The original active area returns to resting potential, and the new activate area induces an action potential in the next adjacent inactive area. The cycle repeats itself down the length of the axon} \tn % Row Count 22 (+ 9) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Refactory Period}} -{}- {\emph{Absolute Refractory Period}}: a brief period during a spike ; A second spike cannot be generated {\emph{Relative Refractory Period}} : A brief period following a spike ; Capable of opening in response to depolarization} \tn % Row Count 27 (+ 5) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Refactory Period PREVENT "Backward" current flow}}: a region that has just experienced an action potential cannot immediately generate another one; this period ensures action potentials travel in only one direction and restricts how frequently they can occur} \tn % Row Count 33 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Action Potential (cont'd) (cont)}} \tn % Row 7 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Contiguous Conduction}}: unmyelinated fibers; touching, next to in sequence // {\bf{Saltatory Conduction}}: myelinated fibers; jumping; propagation of AP in myelinated axons by jumping from node to node} \tn % Row Count 5 (+ 5) % Row 8 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Myelin }} = Axon -{}-\textgreater{} Plasma Membrane -{}-\textgreater{} Myelin Sheath} \tn % Row Count 7 (+ 2) % Row 9 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Nodes of Raniver}} - gaps in myelin insulation containing high densities of voltage-gated Na+ and K+ channels} \tn % Row Count 10 (+ 3) % Row 10 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Schwann Cells (PNS) }}- glial cells in the peripheral nervous system responsible for producing the myelin sheath around axons} \tn % Row Count 13 (+ 3) % Row 11 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Oligodendrocytes (CNS)}} - glial cells in the central nervous system that generate the myelin sheath around multiple axons} \tn % Row Count 16 (+ 3) % Row 12 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Graded Potentials}}: occur in varying grades/degrees of magnitude; die over short distances; spread by passive current flow} \tn % Row Count 19 (+ 3) % Row 13 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Synapses}} -{}-\textgreater{} {\emph{Electrical Synapses}}: neurons connected directly by gap junctions. {\emph{Chemical Synapses (most common)}}: chemical messenger transmits information one way across a space separating the two neurons} \tn % Row Count 24 (+ 5) % Row 14 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Electrical Synapses}} formed by gap junctions (made up of multiple connexins) permits water-soluble particles to pass between cells but blocks passage of larger molecules} \tn % Row Count 28 (+ 4) % Row 15 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Chemical Synapses}}: Presynaptic Neurons (Convergence) -{}-\textgreater{} Postsynaptic Neurons (Divergence)} \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Action Potential (cont'd) (cont)}} \tn % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Chemical Synapse -{}-Sequence of Events }}-{}-\textgreater{} (1) AP propagation in presynaptic neuron (2) Ca\textasciicircum{}2+\textasciicircum{} entry into synaptic knob, terminal button (3) Release of neurotransmitter by exocytosis (4) Binding of neurotransmitter to postsynaptic receptor (5) Opening of specific ion channels in subsynaptic membrane} \tn % Row Count 7 (+ 7) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Synaptic Transmission}} = (1) Presynaptic axon initiates the signal (2) Neurotransmitter carries the signal across a synapse; binds to postsynaptic receptors (3) Postsynaptic (target cell) receives the signal (4) Postsynaptic targets can be a muscle, gland or another neuron} \tn % Row Count 13 (+ 6) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Excitatory Postsynaptic Potential (EPSP)}}: Depolarizing change in membrane potential that moves the neuron closer to the threshold for firing an action potential, commonly triggered by excitatory neurotransmitters such as glutamate (Glu) and acetylcholine (ACh)} \tn % Row Count 19 (+ 6) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Inhibitory Postsynaptic Potential (IPSP)}}: Hyperpolarizing change in membrane potential that moves the neuron further from the threshold for triggering an AP, typically caused by inhibitory neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine (Gly)} \tn % Row Count 25 (+ 6) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Transmitter Removal}}: Degradation (enzymatic breakdown), Transport (active transport back into the presynaptic cell "reuptake), Diffusion (the transmitter simply diffuses away from the synaptic terminal)} \tn % Row Count 30 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Action Potential (cont'd) (cont)}} \tn % Row 21 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Transmitter Release}} -{}-\textgreater{} Tetanus Toxin (BLOCK); {\bf{Transmitter Uptake}} -{}-\textgreater{} Cocaine, SSRIs (PROLONG); {\bf{Transmitter Removal}} -{}-\textgreater{} insecticides (PROLONG); {\bf{Transmitter Binding}} -{}-\textgreater{} Curare (BLOCK)} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Synaptic Transmission (cont'd)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Temporal Summation}} - the additive effect of postsynaptic potentials (PSPs) that occur in rapid succession at the same sy allowing napse, their effects to add together over time} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Spatial Summation}} - the additive effect of multiple postsynaptic potentials (PSPs) that occur simultaneously at different locations on the same neuron} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Cancellation Summation}} - EPSP and IPSP cancel each other} \tn % Row Count 10 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Presynaptic inhibition}} - the inhibition of neurotransmitter release caused by inhibitory input to the presynaptic terminal.} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Motor System}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Neuromuscular Junction}}: An action potential travels down a motor neuron to its terminal -{}-\textgreater{} This electrical signal causes voltage-gated calcium (Ca$^{\textrm{2}}$⁺) channels in the terminal button to open, allowing Ca$^{\textrm{2}}$⁺ to enter -{}-\textgreater{} The influx of Ca$^{\textrm{2}}$⁺ triggers the exocytosis of acetylcholine (ACh) from some of the synaptic vesicles -{}-\textgreater{} ACh diffuses across the synaptic cleft and binds to specific receptor channels on the motor end plate of the muscle fiber membrane -{}-\textgreater{} This binding opens nonspecific cation channels, resulting in a greater influx of sodium ions (Na⁺) into the muscle cell than potassium ions (K⁺) exiting -{}-\textgreater{} ion movement generates an end-plate potential. Local currents then spread from the depolarized end plate to adjacent areas of the muscle membrane -\textgreater{} These local currents trigger the opening of voltage-gated Na⁺ channels in nearby membrane regions -{}-\textgreater{} Resulting Na⁺ influx brings the membrane potential to threshold, initiating an action potential that spreads along the muscle fiber -{}-\textgreater{} Acetylcholine is then broken down by the enzyme acetylcholinesterase, located on the motor end plate, thereby ending the muscle's response} \tn % Row Count 24 (+ 24) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Acetylcholine}} (ACh) – neurotransmitter used by motorneurons; ACh increases the membrane permeability to Na\textasciicircum{}+\textasciicircum{} leading to an EPSP called the end-plate-potential (EPP) ; Acetylcholinesterase (AChE) – enzyme that degrades ACh} \tn % Row Count 29 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Each muscle cell has only one neuromuscular junction} \tn % Row Count 31 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}