4.1 Definitions/Things that are clear

A Polynomial An expression of the form: with Coeffi- $a 0+a 1 x+a 2 x^{2}+\ldots+a _n _x^{n}$ cients in R
(Let R be any where \boldsymbol{n} is a nonnegative ring) integer and $a_{-} i \in R$
Expression: An expression of this form $a 0+a 1 x+\quad$ makes sense, provided that $a _2 x^{2}+\ldots+\quad$ the $\quad a_{-} i$ and x are all
a_n $x^{n} \quad$ elements of some larger

In Thm 4.1, polynomials with coeffi-
the elements cients in R
of the ring P
are called
In Thm 4.1, coefficients
the elements
a_i are called
In Thm 4.1, indeterminate
the special
element x is
called an

By hbrooke7

cheatography.com/hbrooke7/

4.1 Theorems \&	Corollaries
Theorem 4.1 If R is a ring, then there exists a ring P that contains an element x that is not in R and has these properties:	(i) R is a subring of P. (ii) $x a=a x$ for every $a \in R$ (iii) Every element of P can be written in the form $a 0+a 1 x+a 2 x^{2}+\ldots+a _n _x^{n}$ for some $n \geq 0$ and $a_{-} i \in R$ (iv)The representation of elements in P in (iii) is unique in this sense: if $n \leq m$ and $a 0+a 1 x+a 2 x^{2}+\ldots+a _n _x^{n}$ = $b 0+b 1 x+b 2 x^{2}+\ldots+b _m_{-} x^{m}$, then $a_{-} i=\boldsymbol{b}$ i i for $i \leq n$ and $b_{-} i=0 R$ for each $i>n$. (v) $a 0+a 1 x+a 2 x^{2}+\ldots+a _n _x^{n}$ $=O R$ if and only ifa_ $i=0 R$ for every i.

Theorem 4.2

Not published yet.
Last updated 17th March, 2024.
Page 1 of 1 .

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

