Cheatography [

Representation

///Adjacency
Matrix/////////7/1/11//777/
int vV, E, A, B, W, g[1005][l -
005];
cin >> V >> E; memset(g, -1,
sizeof (g9));
for (int 1 = 0; 1 < E; i++) {
cin >> A >> B >> W;
//W eight, can set for
both or single direction
g[A] [B] = W;
g[B] [A] = W;
}
///Adj acency
List// /// /77 117 17 I 1T
vector <pa ir<int, int> >
g[1005];
int Vv, E, A, B, W;
cin >> V >> E;
for (int i = 0; 1 < E; i++) {
cin >> A >> B >> W;
g[A].p ush ba ck(-
mak e p air(B, W));
g[B].p ush Dba ck(-
mak e p air(A, W));
}

Floyd-Warshall

//initialise dist[i][j] to
infinity at the start
for (int k=0;k< n;k++)
for (int i=0;i< n;i++)
for (int j=0;3j< -

n;j++)

By Hackin7

via

Floyd-Warshall (cont)

> /l'if there is a shorter path through
node k, take it!

dist[i][j] = min(dist[i][j], dist[i][k]+dist-
[KID);w
Floyd-Warshall algorithm uses the idea of
triangle inequality, and is very
easy to code (just 4 lines!)

If there are negative cycles, dist[i][i] will be
negative. Note the order!!!

Prim's Algorithm
//Lol just copied from
hackerearth website
#include <io str eam>
#include <ve cto r>
#include <qu eue>
#include <fu nct ion al>
#include <ut ili ty>
using namespace std;
const int MAX = led + 5;
typedef pair<long long, int>
PII;
bool marked [MAX];
vector <PI I> adj[MAX];
long long prim(int x)
{

pri ori ty que ue<PII,
vector <PI I>, greate r<P II> >
Q7

int y;

Published 21st August, 2019.
Last updated 27th December, 2019.
Page 1 of 4.

Prim's Algorithm (cont)

> long long minimumCost = 0;
PIl p;
Q.push(make_pair(0, x));
while(!Q.empty())
{
/I Select the edge with minimum
weight
p = Q.top();
Q.pop();
X = p.second;
/I Checking for cycle
if(marked[x] == true)
continue;
minimumCost += p.first;
marked[x] = true;
for(int i = 0;i < adj[x].size();++i)
{
y = adj[x][i].second,;
if(marked[y] == false)
Q.push(adj[x][il);

}

return minimumCost;

}

int main()

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!

http://www.cheatography.com/
http://www.cheatography.com/hackin7/
http://www.cheatography.com/hackin7/cheat-sheets/c-graph-theory-sample
http://www.cheatography.com/hackin7/
http://crosswordcheats.com

Cheatography [

Prim's Algorithm (cont)

2

int nodes, edges, x, y;

long long weight, minimumCost;
cin >> nodes >> edges;
for(int i = 0;i < edges;++i)
{
cin >> x >>y >> weight;
adj[x].push_back(make_pair(weight,
)i
adj[y].push_back(make_pair(weight,
X));
}

/I Selecting 1 as the starting node
minimumCost = prim(1);

cout << minimumCost << endl;
return 0;

}
Used to Construct MST from Graph

Lowest Common Ancestor of Tree

11 lca(ll N,11 a,11 b){

if(dep th[al< dep -
th[b]) swap(a,b);

//E qualise depth

for (1l k=log2 (N) ;k> -

11 parent =
find p are nt(a,k);/ /pl allk]
if(par ent!=-1
&& depth[par ent]1>= dep thilbl])
{
a=p -

arent;

By Hackin7

via

Lowest Common Ancestor of Tree (cont)

2 }
}
if (@a==b)return a;
/[Jump parent by parent
for(ll k=log2(N);k>=0;k--)}{
Il parent = find_parent(a,k);//p[a][k]
Il parentb = find_parent(b,k);//p[b][k]
if(parent!=parentb)a=parent,b=parentb;
}
return p[a][0];
}

Requires 2k Decomposition of Parents

Breadth First Search

vector<int> g[100005];
queue< pai r<int, int> > qg;
int dist[1 000 005];
fill (dist, dist+1 000005, -1);
while (!qg.em pty()) {
int v = g.fron t{().first;
int d = g.fron t().se -
cond;
g.p op();
if (dist[v] != -1)

continue; //Visited

dist[v] = d;
for (int i = 0; 1 <
glv].s ize(); i++) {

Published 21st August, 2019.
Last updated 27th December, 2019.
Page 2 of 4.

Breadth First Search (cont)

> g.push(make_pair(g[v][i], d+1));

}

Time Complexity: O(|V| + |E|)

Space Complexity: O(b*d)

where d is the depth of the graph and b is
the branching factor.

BFS is more suitable when the goal is close
to the source, BFS is still faster in such

cases.

We can use this algorithm to find the
shortest path in a grid/unweighted
graph

Bellman-Ford

dist[s]=0; //dist all others =
INF
for (int i=0; i<N-1; i++) {
for (int 3=0; J<E; j++){
// if path is
shorter through node u, take it!
dist([v] =
min(di st[v], dist[u]+c ost);
}
}

Solves the Single Source Shortest Path
(SSSP) problem. (shortest path from one
node (source) to all other nodes)

Can be used with negative edges, Run the
algorithm twice to detect for negative cycles

Time Complexity: O(VE)
Space Complexity: O(V)

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!

http://www.cheatography.com/
http://www.cheatography.com/hackin7/
http://www.cheatography.com/hackin7/cheat-sheets/c-graph-theory-sample
http://www.cheatography.com/hackin7/
http://crosswordcheats.com

Cheatography [

Union Find Data Structure

int root (int x) {
if (x == parent [x])
return x ;
return root (paren t[x])
}
bool is con nected (int x,int y)
{
return root (x) ==
root (y) 7
}
void connect (int x , int y) {
int root x = root (x);
int root y = root (y);
if (root x != root y)
parent [root x]
= root y ;
}
////For Rankin -
g/l 1/ S
int rank[N];
void connect (int x , int y) {
int root x = root (x) ,
root y = root (y) ;
if (root x == root y)
return ; // same root
if (rank[root x] >
rank[r oot y]) {
par ent [ro -
ot y] = root x ;
} else if (rank[root x]
< rank[r oot y]) {

par ent [ro -

ot x] = root y ;
} else {
par ent [ro -
ot yl] = root x ;
By Hackin7

via

Union Find Data Structure (cont)

> rank[root_x]++;

Kruskal's Algorithm for MST

vector <tuple<int,int,int> >
edges ; // weight,node A,node B
sort (edges.be gin(), edges.end
) s
int total weight = 0;
for (auto e : edges) {

int weight, a, b;

tie (weigh t,a,b) = e ;

if (root(a) == root (b))
// taking this edge will cause a
cycle

con tinue;

tot al weight += weight
; // take this edge

connect (a, b) ; //
connect them in the UFDS
}

Sort the list of edges by weight

For each edge in ascending order: If both
nodes aren’t already

connected, take it. Else, skip this edge.
Time complexity: O(E log V) (but faster than
Prim’s algorithm in

practice)

UFDS is needed to check if the nodes are
connected in (2).

Published 21st August, 2019.
Last updated 27th December, 2019.
Page 3 of 4.

Depth First Search

bool vis[N];
vector <in t> adjlLis t[N];
void dfs(int node) {

if (vis[n ode]) return;

vis [node] = true;

for (int a = 0; a <
(int)a djL ist [no de]l.si ze();
++a)

dfs (ad jLi -

st[nod e][a]);
}
///Ite rat -
ive /// /17 117 110107 1T -
11717717777
bool vis[N];
vector <in t> adjLis t[N];
stack< int> S;
while (!S.em pty()) {

int node = S.top():

S.p op();

if (vis[n ode]) continue;
vis [node] = true;

for (int a = 0; a <

(int)a djL ist [no del.si ze();
++a)

S.p ush (ad -
JLi st[nod ellal);
}

DFS uses O(d) space, where d is the depth
of the graph

DFS is not suited for infinite graphs.

Some applications of DFS include:

1. Topological Ordering (covered later)

2. Pre-/In-/Post-order numbering of a tree
3. Graph connectivity

4. Finding articulation points

5. Finding bridges

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!

http://www.cheatography.com/
http://www.cheatography.com/hackin7/
http://www.cheatography.com/hackin7/cheat-sheets/c-graph-theory-sample
http://www.cheatography.com/hackin7/
http://crosswordcheats.com

Cheatography [

Dijkstra’s Algorithm

vector<pair<int,int> >
adjList[10000]; // node, weight
priori ty que ue< pai r<i nt, -
int >, vector <pa ir< int ,in t>
>, greate r<p air <in t,i nt> >
> pg; // distance, node
int dist[1l 0000];
memset (dist, -1, sizeof (di -
st))
pg.pus h(m ake pa ir(0,
source)); dist[0] = 0;
while(!pg.em pty()) {
pai r<i nt, int> c =
pg.top();
pg.p op();
if(c.first !=
dist[c.se cond]) continue;
for (auto i : adjLis -
tl[c.se cond]) {
if(dis -
t[i.first] == -1 ||
dist[i.first] > c.first +
i.second) {
dis -
t[i.first] = c.first + i.second;
pa.p -
us h(m ake pa ir(dis t[i.fi -
rst], i.first)):;

}

}

Time Complexity of our implementation: O(E
log E)
Space Complexity: O(V+E)

Solves the Single Source Shortest Path
(SSSP) problem. Means shortest path from
one node to all other nodes. Cannot be used
with negative edges as it runs too slow
Especially cannot be used with negative
cycles

By Hackin7

via

2k Parent Decomposition

typedef long long 11;
11 p[V][K]; //node,kth ancestor
//DFS to compute node parents
for p[i][0], first parent
bool visite d[V];
11 depth[V];
void dfs (1l x) {
if (visit ed[x]) return;
vis ite d[x]=true;

for (auto i:adjl ist [x])

if (!visi ted -
[i.f ir st]) {
if
(p[i.f irs t][0] == -1){

//c out <<i.fi rst <<"< -"<< -

x<< endl;

dep th[i.f irst] = depth[x]+1;

dfs -

(i.f irst);

}
void calc k pa ren ts(ll N)({
for (11 k=1;k< K;k++){
for (11 i=0;i< -
N;i++) {
if (p[i]
[k-1] != -1){

Published 21st August, 2019.
Last updated 27th December, 2019.
Page 4 of 4.

2k Parent Decomposition (cont)

> plil(k]= plplik-111k-1];
telse{p[i][k]=-1;}
/1'if (k==2)cout<<i<<","<<k<<"'"<<-
plilk-1]<<","<<p[pli][k-1]][k-1]<<","<<p[i] K]
<<endl;

}

}
Il find_parent(ll x,Il k){

for (Il i=K;i>=0;i--){
if (k>= (1<<i)){
if (x==-1)return -1;
x=p[X][i];

k-=1<<i;

}

return x;

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!

http://www.cheatography.com/
http://www.cheatography.com/hackin7/
http://www.cheatography.com/hackin7/cheat-sheets/c-graph-theory-sample
http://www.cheatography.com/hackin7/
http://crosswordcheats.com

	C++ Graph Theory Sample Cheat Sheet - Page 1
	Repres­ent­ation
	Prim's Algorithm
	Floyd-­War­shall

	C++ Graph Theory Sample Cheat Sheet - Page 2
	Breadth First Search
	Bellma­n-Ford
	Lowest Common Ancestor of Tree

	C++ Graph Theory Sample Cheat Sheet - Page 3
	Union Find Data Structure
	Depth First Search
	Kruskal's Algorithm for MST

	C++ Graph Theory Sample Cheat Sheet - Page 4
	Dijkstra's Algorithm
	2k Parent Decomp­osition

