
C++ Graph Theory Sample Cheat Sheet
by Hackin7 via cheatography.com/71996/cs/20334/

Repres​ent​ation

///Adjacency
Matrix////////////////////
int V, E, A, B, W, g[1005​][1​‐
005];
cin >> V >> E; memset(g, -1,
sizeof​(g));
for (int i = 0; i < E; i++) {
 ​ ​ ​ cin >> A >> B >> W;
 ​ ​ ​ ​//W​eight, can set for
both or single direction
 ​ ​ ​ ​g[A][B] = W;
 ​ ​ ​ ​g[B][A] = W;
}
///Adj​acency
List//​///​///​///​///​///​/////
vector​<pa​ir<int, int> >
g[1005];
int V, E, A, B, W;
cin >> V >> E;
for (int i = 0; i < E; i++) {
 ​ ​ ​ cin >> A >> B >> W;
 ​ ​ ​ ​g[A​].p​ush​_ba​ck(​‐
mak​e_p​air(B, W));
 ​ ​ ​ ​g[B​].p​ush​_ba​ck(​‐
mak​e_p​air(A, W));
}

Floyd-​War​shall

//initialise dist[i][j] to
infinity at the start
for (int k=0;k<​n;k++)
 ​ ​ ​ for (int i=0;i<​n;i++)
 ​ ​ ​ ​ ​ ​ ​ for (int j=0;j<​‐
n;j++)

Floyd-​War​shall (cont)

> ​ ​ ​ ​ ​ ​ ​ // if there is a shorter path through
node k, take it!
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​dis​t[i][j] = min(di​st[​i][j], dist[i​][k​]+d​ist​‐
[k]​[j]);w

Floyd-​War​shall algorithm uses the idea of
triangle inequa​lity, and is very
easy to code (just 4 lines!)

If there are negative cycles, dist[i][i] will be
negative. Note the order!!!

Prim's Algorithm

//Lol just copied from
hackerearth website
#include <io​str​eam>
#include <ve​cto​r>
#include <qu​eue>
#include <fu​nct​ion​al>
#include <ut​ili​ty>
using namespace std;
const int MAX = 1e4 + 5;
typedef pair<long long, int>
PII;
bool marked​[MAX];
vector <PI​I> adj[MAX];
long long prim(int x)
{
 ​ ​ ​ ​pri​ori​ty_​que​ue<PII,
vector​<PI​I>, greate​r<P​II> >
Q;
 ​ ​ ​ int y;

Prim's Algorithm (cont)

> ​ ​ ​ long long minimu​mCost = 0;
 ​ ​ ​ PII p;
 ​ ​ ​ ​Q.p​ush​(ma​ke_​pair(0, x));
 ​ ​ ​ ​whi​le(​!Q.e​mp​ty())
 ​ ​ ​ {
 ​ ​ ​ ​ ​ ​ ​ // Select the edge with minimum
weight
 ​ ​ ​ ​ ​ ​ ​ p = Q.top();
 ​ ​ ​ ​ ​ ​ ​ ​Q.p​op();
 ​ ​ ​ ​ ​ ​ ​ x = p.second;
 ​ ​ ​ ​ ​ ​ ​ // Checking for cycle
 ​ ​ ​ ​ ​ ​ ​ ​if(​mar​ked[x] == true)
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​con​tinue;
 ​ ​ ​ ​ ​ ​ ​ ​min​imu​mCost += p.first;
 ​ ​ ​ ​ ​ ​ ​ ​mar​ked[x] = true;
 ​ ​ ​ ​ ​ ​ ​ ​for(int i = 0;i < adj[x].si​ze(​);++i)
 ​ ​ ​ ​ ​ ​ ​ {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ y = adj[x]​[i].se​cond;
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​if(​mar​ked[y] == false)
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​Q.p​ush​(ad​j[x​][i]);
 ​ ​ ​ ​ ​ ​ ​ }
 ​ ​ ​ }
 ​ ​ ​ ​return minimu​mCost;
}
int main()

By Hackin7
cheatography.com/hackin7/

Published 21st August, 2019.
Last updated 27th December, 2019.
Page 1 of 4.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/hackin7/
http://www.cheatography.com/hackin7/cheat-sheets/c-graph-theory-sample
http://www.cheatography.com/hackin7/
https://apollopad.com

C++ Graph Theory Sample Cheat Sheet
by Hackin7 via cheatography.com/71996/cs/20334/

Prim's Algorithm (cont)

> {
 ​ ​ ​ int nodes, edges, x, y;
 ​ ​ ​ long long weight, minimu​mCost;
 ​ ​ ​ cin >> nodes >> edges;
 ​ ​ ​ ​for(int i = 0;i < edges;++i)
 ​ ​ ​ {
 ​ ​ ​ ​ ​ ​ ​ cin >> x >> y >> weight;
 ​ ​ ​ ​ ​ ​ ​ ​adj​[x].pu​sh_​bac​k(m​ake​_pa​ir(​weight,
y));
 ​ ​ ​ ​ ​ ​ ​ ​adj​[y].pu​sh_​bac​k(m​ake​_pa​ir(​weight,
x));
 ​ ​ ​ }
 ​ ​ ​ // Selecting 1 as the starting node
 ​ ​ ​ ​min​imu​mCost = prim(1);
 ​ ​ ​ cout << minimu​mCost << endl;
 ​ ​ ​ ​return 0;
}

Used to Construct MST from Graph

Lowest Common Ancestor of Tree

ll lca(ll N,ll a,ll b){
 ​ ​ ​ ​if(​dep​th[​a]<​dep​‐
th[b]) swap(a,b);
 ​ ​ ​ ​//E​qualise depth
 ​ ​ ​ ​for(ll k=log2​(N)​;k>​‐
=0;​k--){
 ​ ​ ​ ​ ​ ​ ​ ll parent =
find_p​are​nt(​a,k​);/​/p[​a][k]
 ​ ​ ​ ​ ​ ​ ​ ​if(​par​ent!=-1
&& depth[​par​ent​]>=​dep​th[b])
{
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​a=p​‐
arent;

Lowest Common Ancestor of Tree (cont)

> ​ ​ ​ ​ ​ ​ ​ }
 ​ ​ ​ }
 ​ ​ ​ if (a==b)​return a;
 ​ ​ ​ ​//Jump parent by parent
 ​ ​ ​ ​for(ll k=log2​(N)​;k>​=0;​k--){
 ​ ​ ​ ​ ​ ​ ​ ll parent = find_p​are​nt(​a,k​);/​/p[​a][k]
 ​ ​ ​ ​ ​ ​ ​ ll parentb = find_p​are​nt(​b,k​);/​/p[​b][k]
 ​ ​ ​ ​ ​ ​ ​ ​if(​par​ent​!=p​are​ntb​)a=​par​ent​,b=​par​entb;
 ​ ​ ​ }
 ​ ​ ​ ​return p[a][0];
}

Requires 2k Decomp​osition of Parents

Breadth First Search

vector<int> g[100005];
queue<​pai​r<int, int> > q;
int dist[1​000​005];
fill(dist, dist+1​000005, -1);
while (!q.em​pty()) {
 ​ ​ ​ int v = q.fron​t().first;
 ​ ​ ​ int d = q.fron​t().se​‐
cond;
 ​ ​ ​ ​q.p​op();
 ​ ​ ​ if (dist[v] != -1)
continue; //Visited
 ​ ​ ​ ​dist[v] = d;
 ​ ​ ​ for (int i = 0; i <
g[v].s​ize(); i++) {

Breadth First Search (cont)

> ​ ​ ​ ​ ​ ​ ​ ​q.p​ush​(ma​ke_​pai​r(g​[v][i], d+1));
 ​ ​ ​ }
}

Time Comple​xity: O(|V| + |E|)
Space Comple​xity: O(b^d)
where d is the depth of the graph and b is
the branching factor.

BFS is more suitable when the goal is close
to the source, BFS is still faster in such
cases.

We can use this algorithm to find the
shortest path in a grid/u​nwe​ighted
graph

Bellma​n-Ford

dist[s]=0; //dist all others =
INF
for (int i=0; i<N-1; i++){
 ​ ​ ​ for (int j=0; j<E; j++){
 ​ ​ ​ ​ ​ ​ ​ // if path is
shorter through node u, take it!
 ​ ​ ​ ​ ​ ​ ​ ​dist[v] =
min(di​st[v], dist[u​]+c​ost);
 ​ ​ ​ }
}

Solves the Single Source Shortest Path
(SSSP) problem. (shortest path from one
node (source) to all other nodes)
Can be used with negative edges, Run the
algorithm twice to detect for negative cycles

Time Comple​xity: O(VE)
Space Comple​xity: O(V)

By Hackin7
cheatography.com/hackin7/

Published 21st August, 2019.
Last updated 27th December, 2019.
Page 2 of 4.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/hackin7/
http://www.cheatography.com/hackin7/cheat-sheets/c-graph-theory-sample
http://www.cheatography.com/hackin7/
https://apollopad.com

C++ Graph Theory Sample Cheat Sheet
by Hackin7 via cheatography.com/71996/cs/20334/

Union Find Data Structure

int root (int x) {
 ​ ​ ​ if (x == parent [x])
return x ;
 ​ ​ ​ ​return root (paren​t[x])
;
}
bool is_con​nected (int x,int y)
{
 ​ ​ ​ ​return root (x) ==
root(y) ;
}
void connect (int x , int y) {
 ​ ​ ​ int root_x = root (x);
 ​ ​ ​ int root_y = root (y);
 ​ ​ ​ if (root_x != root_y)
 ​ ​ ​ ​ ​ ​ ​ ​parent [root_x]
= root_y ;
}
////For Rankin​‐
g//​///​///​///​///​///​/////
int rank[N];
void connect (int x , int y) {
 ​ ​ ​ int root_x = root (x) ,
root_y = root (y) ;
 ​ ​ ​ if (root_x == root_y)
return ; // same root
 ​ ​ ​ if (rank[​root_x] >
rank[r​oot_y]) {
 ​ ​ ​ ​ ​ ​ ​ ​par​ent​[ro​‐
ot_y] = root_x ;
 ​ ​ ​ } else if (rank[​root_x]
< rank[r​oot_y]) {
 ​ ​ ​ ​ ​ ​ ​ ​par​ent​[ro​‐
ot_x] = root_y ;
 ​ ​ ​ } else {
 ​ ​ ​ ​ ​ ​ ​ ​par​ent​[ro​‐
ot_y] = root_x ;

Union Find Data Structure (cont)

> ​ ​ ​ ​ ​ ​ ​ ​ran​k[r​oot​_x]++;
 ​ ​ ​ }
}

Kruskal's Algorithm for MST

vector <tuple<int,int,int> >
edges ; // weight,node A,node B
sort (edges.be​gin(), edges.end
()) ;
int total_​weight = 0;
for (auto e : edges) {
 ​ ​ ​ int weight, a, b;
 ​ ​ ​ tie (weigh​t,a,b) = e ;
 ​ ​ ​ if (root(a) == root(b))
// taking this edge will cause a
cycle
 ​ ​ ​ ​ ​ ​ ​ ​con​tinue;
 ​ ​ ​ ​tot​al_​weight += weight
; // take this edge
 ​ ​ ​ ​connect (a, b) ; //
connect them in the UFDS
}

Sort the list of edges by weight
For each edge in ascending order: If both
nodes aren’t already
connected, take it. Else, skip this edge.
Time comple​xity: O(E log V) (but faster than
Prim’s algorithm in
practice)
UFDS is needed to check if the nodes are
connected in (2).

Depth First Search

bool vis[N];
vector​<in​t> adjLis​t[N];
void dfs(int node) {
 ​ ​ ​ if (vis[n​ode]) return;
 ​ ​ ​ ​vis​[node] = true;
 ​ ​ ​ for (int a = 0; a <
(int)a​djL​ist​[no​de].si​ze();
++a)
 ​ ​ ​ ​ ​ ​ ​ ​dfs​(ad​jLi​‐
st[​nod​e][a]);
}
///Ite​rat​‐
ive​///​///​///​///​///​///​///​‐
///​///​/////
bool vis[N];
vector​<in​t> adjLis​t[N];
stack<​int> S;
while (!S.em​pty()) {
 ​ ​ ​ int node = S.top();
 ​ ​ ​ ​S.p​op();
 ​ ​ ​ if (vis[n​ode]) continue;
 ​ ​ ​ ​vis​[node] = true;
 ​ ​ ​ for (int a = 0; a <
(int)a​djL​ist​[no​de].si​ze();
++a)
 ​ ​ ​ ​ ​ ​ ​ ​S.p​ush​(ad​‐
jLi​st[​nod​e][a]);
}

DFS uses O(d) space, where d is the depth
of the graph

DFS is not suited for infinite graphs.

Some applic​ations of DFS include:
1. Topolo​gical Ordering (covered later)
2. Pre-/I​n-/​Pos​t-order numbering of a tree
3. Graph connec​tivity
4. Finding articu​lation points
5. Finding bridges

By Hackin7
cheatography.com/hackin7/

Published 21st August, 2019.
Last updated 27th December, 2019.
Page 3 of 4.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/hackin7/
http://www.cheatography.com/hackin7/cheat-sheets/c-graph-theory-sample
http://www.cheatography.com/hackin7/
https://apollopad.com

C++ Graph Theory Sample Cheat Sheet
by Hackin7 via cheatography.com/71996/cs/20334/

Dijkstra's Algorithm

vector<pair<int,int> >
adjList[10000]; // node, weight
priori​ty_​que​ue<​pai​r<i​nt,​‐
int​>, vector​<pa​ir<​int​,in​t>
>, greate​r<p​air​<in​t,i​nt> >
> pq; // distance, node
int dist[1​0000];
memset​(dist, -1, sizeof​(di​‐
st));
pq.pus​h(m​ake​_pa​ir(0,
source)); dist[0] = 0;
while(​!pq.em​pty()){
 ​ ​ ​ ​pai​r<i​nt,​int> c =
pq.top();
 ​ ​ ​ ​pq.p​op();
 ​ ​ ​ ​if(​c.first !=
dist[c.se​cond]) continue;
 ​ ​ ​ ​for​(auto i : adjLis​‐
t[c.se​cond]){
 ​ ​ ​ ​ ​ ​ ​ ​if(​dis​‐
t[i.first] == -1 ||
dist[i.first] > c.first +
i.second){
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​dis​‐
t[i.first] = c.first + i.second;
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​pq.p​‐
us​h(m​ake​_pa​ir(​dis​t[i.fi​‐
rst], i.first));
 ​ ​ ​ ​ ​ ​ ​ }
 ​ ​ ​ }
}

Time Complexity of our implem​ent​ation: O(E
log E)
Space Comple​xity: O(V+E)

Solves the Single Source Shortest Path
(SSSP) problem. Means shortest path from
one node to all other nodes. Cannot be used
with negative edges as it runs too slow
Especially cannot be used with negative
cycles

2k Parent Decomp​osition

typedef long long ll;
ll p[V][K]; //node,kth ancestor
//DFS to compute node parents
for p[i][0], first parent
bool visite​d[V];
ll depth[V];
void dfs(ll x){
 ​ ​ ​ if (visit​ed[​x])​return;
 ​ ​ ​ ​vis​ite​d[x​]=true;
 ​ ​ ​ for (auto i:adjl​ist​[x])
{
 ​ ​ ​ ​ ​ ​ ​ if (!visi​ted​‐
[i.f​ir​st]){
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ if
(p[i.f​irs​t][0] == -1){
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​‐
//c​out​<<i.fi​rst​<<"<​-"<<​‐
x<<​endl;
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​‐
p[i.fi​rst][0] = x;
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​‐
dep​th[​i.f​irst] = depth[​x]+1;
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ }
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​dfs​‐
(i.f​irst);
 ​ ​ ​ ​ ​ ​ ​ }
 ​ ​ ​ }
}
void calc_k​_pa​ren​ts(ll N){
 ​ ​ ​ for (ll k=1;k<​K;k++){
 ​ ​ ​ ​ ​ ​ ​ for (ll i=0;i<​‐
N;i++){
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ if (p[i]
[k-1] != -1){

2k Parent Decomp​osition (cont)

> ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​p[i​][k]= p[p[i]​[k-​1]]​[k-1];
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​}el​se{​p[i​][k​]=-1;}
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ // if (k==2)​cou​t<<​i<<​"​,"<<​k<<​"​:"<<​‐
p[i​][k​-1]​<<",​"​<<p​[p[​i][​k-1​]][​k-1​]<<​"​,"<<​p[i​][k​]
<<​endl;
 ​ ​ ​ ​ ​ ​ ​ }
 ​ ​ ​ }
}
ll find_p​are​nt(ll x,ll k){
 ​ ​ ​ for (ll i=K;i>​=0;​i--){
 ​ ​ ​ ​ ​ ​ ​ if (k>= (1<​<i)){
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ if (x==-1​)return -1;
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​x=p​[x][i];
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​k-=​1<<i;
 ​ ​ ​ ​ ​ ​ ​ }
 ​ ​ ​ }
 ​ ​ ​ ​return x;
}

By Hackin7
cheatography.com/hackin7/

Published 21st August, 2019.
Last updated 27th December, 2019.
Page 4 of 4.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/hackin7/
http://www.cheatography.com/hackin7/cheat-sheets/c-graph-theory-sample
http://www.cheatography.com/hackin7/
https://apollopad.com

	C++ Graph Theory Sample Cheat Sheet - Page 1
	Repres­ent­ation
	Prim's Algorithm
	Floyd-­War­shall

	C++ Graph Theory Sample Cheat Sheet - Page 2
	Breadth First Search
	Bellma­n-Ford
	Lowest Common Ancestor of Tree

	C++ Graph Theory Sample Cheat Sheet - Page 3
	Union Find Data Structure
	Depth First Search
	Kruskal's Algorithm for MST

	C++ Graph Theory Sample Cheat Sheet - Page 4
	Dijkstra's Algorithm
	2k Parent Decomp­osition

