\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{gustavhelms} \pdfinfo{ /Title (linear-algebra.pdf) /Creator (Cheatography) /Author (gustavhelms) /Subject (Linear Algebra Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{70A3A1} \definecolor{LightBackground}{HTML}{F6F9F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Linear Algebra Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{gustavhelms} via \textcolor{DarkBackground}{\uline{cheatography.com/146840/cs/31828/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}gustavhelms \\ \uline{cheatography.com/gustavhelms} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 11th June, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{1.64241 cm} x{3.33459 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Linear Systems}} \tn % Row 0 \SetRowColor{LightBackground} Solution & Can have {\bf{no solution}}, {\bf{one solution}} or {\bf{infinitly many}}. The solution is the {\bf{interserction}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} Solution set & The set of all possible solutions \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} Consistency & A system is {\bf{consistent}} if there is at least one solution otherwise it is {\bf{inconsistent}} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} Equivalent & Linear systems are {\bf{equivalent}} if they have the same {\bf{solution set}} \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} Row operations & {\bf{Replacement}}, {\bf{interchange}} and {\bf{scaling}} \tn % Row Count 15 (+ 2) % Row 5 \SetRowColor{white} Row equivalent & If there is a sequence of {\bf{row operations}} between two linear systems then the systems are {\bf{row equivalent}}. Systems that are row equivalent has the same {\bf{solution set}}. \tn % Row Count 22 (+ 7) % Row 6 \SetRowColor{LightBackground} Existence & If a system has a solution (i.e. {\bf{consistent}}) \tn % Row Count 24 (+ 2) % Row 7 \SetRowColor{white} Uniqueness & Is the solution unique \tn % Row Count 25 (+ 1) % Row 8 \SetRowColor{LightBackground} Homogenous & A system is {\bf{homogenous}} if it can be written in the form A{\bf{x}} = 0 \tn % Row Count 28 (+ 3) % Row 9 \SetRowColor{white} Trivial solution & If a system only has a the solution {\bf{x}} = 0. A system with no {\bf{free variable}} only have the trivial solution. \tn % Row Count 33 (+ 5) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{1.64241 cm} x{3.33459 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Linear Systems (cont)}} \tn % Row 10 \SetRowColor{LightBackground} Non-trivial solution & A {\bf{nonzero}} vector that satisfies A{\bf{x}} = 0. Has free variable. \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Inverser of a Matrix}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{C}} is invertible if {\bf{CA}} = I\textasciicircum{}n\textasciicircum{} and {\bf{AC}} = I\textasciicircum{}n\textasciicircum{}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{If {\bf{A}} is (2x2) then, A\textasciicircum{}-1\textasciicircum{} =} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{(A\textasciicircum{}-1\textasciicircum{})\textasciicircum{}-1\textasciicircum{}}} = {\bf{A}}} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{(AB)\textasciicircum{}-1\textasciicircum{}}}= {\bf{B\textasciicircum{}-1\textasciicircum{}A\textasciicircum{}-1\textasciicircum{}}}} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{(A\textasciicircum{}T\textasciicircum{})\textasciicircum{}-1\textasciicircum{}}}= {\bf{(A\textasciicircum{}-1\textasciicircum{})\textasciicircum{}T\textasciicircum{}}}} \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Linear Transformations}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Tranformation/mapping} & T(x) from R\textasciicircum{}n\textasciicircum{} to R\textasciicircum{}m\textasciicircum{} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Image & For x in R\textasciicircum{}n\textasciicircum{}the vector T(x) in R\textasciicircum{}m\textasciicircum{}is called the image \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} Range & The set of all {\bf{images}} of the vectors in the {\bf{domain}} of T(x) \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} Criterion for a transformation to be linear & 1. T(u + v) = T(u) + T(v)\{\{nl\}\} 2. T(cU) = cT(U) \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} Standard Matrix & The matrix A for a linear transformation T, that satisfies T(x) = Ax for all x in R\textasciicircum{}n\textasciicircum{} \tn % Row Count 17 (+ 5) % Row 5 \SetRowColor{white} Onto & A mapping T is said to be {\bf{onto}} if each b in the codomain is the image of at least one x in the domain. Range = Codomain. Solution existance. ColA must match codomain. \tn % Row Count 26 (+ 9) % Row 6 \SetRowColor{LightBackground} One-to-one & If each b in the {\bf{codomain}} is only the image {\bf{at most}} one x in the {\bf{domain}}. Solution Uniqueness. \tn % Row Count 32 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Linear Transformations (cont)}} \tn % Row 7 \SetRowColor{LightBackground} & T is one-to-one if and only if the cols of A are {\bf{linearly independent}} \tn % Row Count 4 (+ 4) % Row 8 \SetRowColor{white} Free variable? & If the system has a free variable, then the system is {\bf{not}} one-to-one. I.e. the homogenous system only has the trivial solution \tn % Row Count 11 (+ 7) % Row 9 \SetRowColor{LightBackground} Pivot in every row? & Then T is {\bf{onto}} \tn % Row Count 12 (+ 1) % Row 10 \SetRowColor{white} Pivot in every column? & Then T is {\bf{one-to-one}} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{To determine whether a vector {\bf{c}} is in the range of a {\bf{T}}. {\bf{Solution}}: Let T(x) = Ax. Solve the matrix equation Ax = c. If the system is {\bf{consistent}}, then c is in the range of T.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Invertible Matrix Theorem}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ The following statements are equivalent i.e. either they are all true or all false. Let A be a ({\emph{n}}x{\emph{n}}) matrix}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{𝐴 is an invertible matrix.} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{𝐴 is row equivalent to the 𝑛×𝑛 identity matrix} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{𝐴 has 𝑛 pivot positions.} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The equation 𝐴𝐱 = 𝟎 has only the trivial solution} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The columns of 𝐴 form a linearly independent set} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The linear transformation 𝐱 ↦ 𝐴𝐱 is one-to-one.} \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The equation 𝐴𝐱 = 𝐛 has at least one solution for each 𝐛 in R\textasciicircum{}n\textasciicircum{}} \tn % Row Count 15 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The columns of 𝐴 span R\textasciicircum{}n\textasciicircum{}} \tn % Row Count 16 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The linear transformation 𝐱 ↦ 𝐴𝐱 maps R\textasciicircum{}n\textasciicircum{} onto R\textasciicircum{}n\textasciicircum{}} \tn % Row Count 18 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{There is an 𝑛×𝑛 matrix 𝐢 such that 𝐢𝐴 = 𝐼.} \tn % Row Count 20 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{There is an 𝑛×𝑛 matrix 𝐷 such that 𝐴𝐷 = 𝐼.} \tn % Row Count 22 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{𝐴\textasciicircum{}T\textasciicircum{} is an invertible matrix.} \tn % Row Count 23 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The columns of A form a basis of R\textasciicircum{}n} \tn % Row Count 24 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Col A = R\textasciicircum{}n} \tn % Row Count 25 (+ 1) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Dim Col A = n} \tn % Row Count 26 (+ 1) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Rank A = n} \tn % Row Count 27 (+ 1) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Nul A = \{0\}} \tn % Row Count 28 (+ 1) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Dim Nul A = 0} \tn % Row Count 29 (+ 1) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The number 0 is not an eigenvalue of A} \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Invertible Matrix Theorem (cont)}} \tn % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The determinant of A is not 0} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Elementary Matrices}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Elementary Matrix}} Is obtained by performing a single elementary row operation on an {\bf{identity matrix}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Each elementary matrix {\bf{E}} is {\bf{invertible}}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A nxn matrix A is invertible if and only if A is row equivalent to I\textasciicircum{}n\textasciicircum{}.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A = E\textasciicircum{}-1\textasciicircum{}I\textasciicircum{}n\textasciicircum{} and A\textasciicircum{}-1\textasciicircum{} = EI\textasciicircum{}n\textasciicircum{}= I\textasciicircum{}n\textasciicircum{}} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Row reduce the augmented matrix {[} A I {]} to {[} I A\textasciicircum{}-1\textasciicircum{}{]} \{\{nl\}\} {\bf{NOTE}} If A is not row equivalent to I then A is not invertible} \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Linear Independence}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A set of vectors are {\bf{linearly independent}} if they cannot be created by any linear combinations of earlier vectors in the set.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{If a set of vectors are {\bf{linear independent}}, then the solution is {\bf{unique}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{If the vector equeation c1{\bf{{\emph{v}}1 + c2{\bf{}}v}}2 + ... + cp{\bf{*v}}p = 0 only has a {\bf{trivial solution}} the set of vectors are {\bf{linearly independent}}} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Theorem}}: If a set contains more vectors than there are entries in each vector, then the set is {\bf{linearly dependent}}} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Theorem}}: If a set of vectors containt the zero vector, then the set is {\bf{linearly dependent}}} \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.89126 cm} x{3.08574 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Algebraic properties of a matrix}} \tn % Row 0 \SetRowColor{LightBackground} Matrix and vector sum & A({\bf{u}} + {\bf{v}}) = A{\bf{u}} + A{\bf{v}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Matrix, vector and scalar & A({\emph{c{\bf{}}u}}) = {\emph{c}}(A{\bf{u}}) \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Associative law & A(BC) = (AB)C \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} Left distributive law & A (B + C) = AB + AC \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} Right distributive law & (B + C) = BA + BC \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} Scalar multiplication & r(AB) = (rA)B = A(rB) \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} Identity matrix multi & I\textasciicircum{}m\textasciicircum{}A = A = AI\textasciicircum{}n\textasciicircum{} \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} Commute & If AB = BA then we say that A and B {\bf{commute}} with each others \tn % Row Count 16 (+ 3) % Row 8 \SetRowColor{LightBackground} & (A\textasciicircum{}T\textasciicircum{})\textasciicircum{}T\textasciicircum{} = A \tn % Row Count 17 (+ 1) % Row 9 \SetRowColor{white} & (A + B)\textasciicircum{}T\textasciicircum{} = A\textasciicircum{}T\textasciicircum{} + B\textasciicircum{}T\textasciicircum{} \tn % Row Count 18 (+ 1) % Row 10 \SetRowColor{LightBackground} & (AB)\textasciicircum{}T\textasciicircum{} = B\textasciicircum{}T\textasciicircum{} A\textasciicircum{}T\textasciicircum{} \tn % Row Count 19 (+ 1) % Row 11 \SetRowColor{white} & For any scalar r, (rA)\textasciicircum{}T\textasciicircum{} = rA\textasciicircum{}T\textasciicircum{} \tn % Row Count 21 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{LU Factorization}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Factorization}} of a matrix A is an equation that expresses A as a {\bf{product}} of two or more matrices: \{\{nl\}\} {\bf{Synthesis}}: BC = A \{\{nl\}\} {\bf{Analysis}}: A= BC} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Assumption:}} A is a {\emph{m}}x{\emph{n}} matrix that can be row reduced without {\bf{interchanges}}} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{L}}: is a {\emph{m}}x{\emph{m}} unit lower triangular with 1's on the diagonal} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{U}}: is a {\emph{m}}x{\emph{n}} echelon form of A} \tn % Row Count 9 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{U}} is equal to {\bf{E*A = U}}, why {\bf{A = E\textasciicircum{}-1\textasciicircum{}U}} = LU where {\bf{L}} = {\bf{E\textasciicircum{}-1\textasciicircum{}}}} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{See figure ** for how to find L and U} \tn % Row Count 12 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Find {\bf{x}} by first solving {\bf{Ly = b}} and then solving {\bf{Ux = y}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.64241 cm} x{3.33459 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Row Reduction and Echelon forms}} \tn % Row 0 \SetRowColor{LightBackground} Leading entry & A leading entry refers to the leftmost {\bf{non-zero}} entry in a row \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Echelon form & Row equivalent systems can be reduced into {\bf{several different}} echelon forms \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} Reduced echelon form & A system is only row equivalent to {\bf{one}} REF \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} Forward phase & Reducing an augmented matrix A into an {\bf{echelon form}} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} Backward phase & Reducing an augmented matrix A into a {\bf{reduced echelon form}} \tn % Row Count 14 (+ 3) % Row 5 \SetRowColor{white} Basic variables & Variables in {\bf{pivot columns}}. \tn % Row Count 16 (+ 2) % Row 6 \SetRowColor{LightBackground} Free variables & Variables that are not in {\bf{pivot columns}}. When a system has a free variable the system is {\bf{consistent}} but not {\bf{unique}} \tn % Row Count 21 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Subspaces of R\textasciicircum{}n}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A {\bf{subspace}} of R\textasciicircum{}n\textasciicircum{} is any set H in R\textasciicircum{}n\textasciicircum{} that has three properties:} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{- The zero vector is in H} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{- For each {\bf{u}} and {\bf{v}} in H, the sum {\bf{u + v}} is in H} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{- For each {\bf{u}} in {\emph{H}} and each scalar {\emph{c}}, the vector {\emph{c{\bf{}}u}} is in {\emph{H}}} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Zero subspace}} is the set containing only the {\bf{zero vector}} in R\textasciicircum{}n\textasciicircum{}} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Column space}} is the set of all linear combinations of the columns of A.} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Null space (Nul A)}} is the set of all solutions of the equation {\bf{Ax = 0}}} \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Basis}} for a subspace H is the set of {\bf{linearly independent}} vectors that span H} \tn % Row Count 15 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{In general, the {\bf{pivot columns}} of A form a basis for col A} \tn % Row Count 17 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The number of vectors in any basis is {\bf{unique}}. We call this number {\bf{dimension}}} \tn % Row Count 19 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The {\bf{rank}} of a matrix 𝐴, denoted by {\bf{rank 𝐴}}, is the {\bf{dimension}} of the {\bf{column space}} of 𝐴} \tn % Row Count 22 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Determine whether b is in the {\bf{col A}}. {\bf{Solution}}: b is only in col A if the equation {\bf{Ax = b}} has a solution} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Page break}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Algebraic properties of a vector}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{u}} + {\bf{v}} = {\bf{v}} + {\bf{u}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{({\bf{u}} + {\bf{v}}) + {\bf{w}} = {\bf{u}} + ({\bf{v}} + {\bf{w}})} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{u}} + (-{\bf{u}}) = -{\bf{u}} + {\bf{u}}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{c}}({\bf{u}} + {\bf{v}}) = {\emph{c{\bf{}}u}} + {\emph{c{\bf{}}v}}} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{c}}({\emph{d{\bf{}}u}}) = ({\emph{cd}}){\bf{u}}} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}