Linear Systems	
Solution	Can have no solution, one solution or infinitly many. The solution is the inters- erction
Solution set	The set of all possible solutions
Consistency	A system is consistent if there is at least one solution otherwise it is inconsistent
Equivalent	Linear systems are equivalent if they have the same solution set
Row	Replacement, interchange and scaling
operations	
Row there is a sequence of	
equivalent	If row operations between two linear systems then the systems are row equivalent. Systems that are row equivalent has the same solution set. If a system has a solution (i.e. consistent)
Is the solution unique	

Inverser of a Matrix

C is invertible if $C A=1^{n}$ and $A C=1^{n}$
If \mathbf{A} is (2×2) then, $\mathrm{A}^{-1}=$
$\left(A^{-1}\right)^{-1}=A$
$(A B)^{-1}=B^{-1} A^{-1}$
$\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$

By gustavhelms

Linear Transformations	
Tranfo- rmatio- n/m- apping	$T(x)$ from R^{n} to R^{m}
Image	For x in R^{n} the vector $\mathrm{T}(\mathrm{x})$ in R^{m} is called the image
Range	The set of all images of the vectors in the domain of $\mathrm{T}(\mathrm{x})$
Criterion for a transformation to be linear	1. $T(u+v)=T(u)+T(v)$ 2. $T(c U)=c T(U)$
Standard Matrix	The matrix A for a linear transformation T, that satisfies $T(x)=$ Ax for all x in R^{n}
Onto	A mapping T is said to be onto if each b in the codomain is the image of at least one x in the domain. Range = Codomain. Solution existance. ColA must match codomain.
One-toone	If each b in the codomain is only the image at most one x in the domain. Solution Uniqueness.
	T is one-to-one if and only if the cols of A are linearly independent
Free variable?	If the system has a free variable, then the system is not one-to-one. I.e. the homogenous system only has the trivial solution
Pivot in every row?	Then T is onto

Linear Transformations (cont)

Pivot in every	Then T is one-to-
column?	one

To determine whether a vector \mathbf{c} is in the range of a T. Solution: Let $T(x)=A x$. Solve the matrix equation $A x=c$. If the system is consistent, then c is in the range of T .

The Invertible Matrix Theorem

The following statements are equivalent i.e. either they are all true or all false. Let A be a ($n \times n$) matrix
A is an invertible matrix.
A is row equivalent to the $n \times n$ identity matrix
A has n pivot positions.
The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution

The columns of A form a linearly independent set

The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.

The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in R^{n}

The columns of A span $\mathrm{R} \quad \mathrm{n}$
The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$
maps R^{n} onto R^{n}
There is an $n \times n$ matrix C such that $\square A=I$.

There is an $n \times n$ matrix D such that $\square D=I$.
A^{\top} is an invertible matrix.
The columns of A form a basis of $R^{\wedge} n$
$\operatorname{Col} A=R \wedge n$
$\operatorname{Dim} \operatorname{Col} A=n$
Rank $\mathrm{A}=\mathrm{n}$
Nul $A=\{0\}$
Dim Nul A $=0$
The number 0 is not an eigenvalue of A
The determinant of A is not 0

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Not published yet.
Last updated 11th June, 2022.
Page 1 of 4 .

Elementary Matrices

Elementary Matrix Is obtained by performing a single elementary row operation on an identity matrix
Each elementary matrix E is invertible
A nxn matrix A is invertible if and only if A is row equivalent to I^{n}.
$A=E^{-1} I^{n}$ and $A^{-1}=E I^{n}=I^{n}$
Row reduce the augmented matrix [A I] to [$\|^{-1}$]
NOTE If A is not row equivalent to I then A is not invertible

Linear Independence

A set of vectors are linearly independent if they cannot be created by any linear combinations of earlier vectors in the set.

If a set of vectors are linear independent, then the solution is unique If the vector equeation c1v1 $+c \mathbf{v} \mathbf{v} 2+\ldots+$ $c p^{*} v p=0$ only has a trivial solution the set of vectors are linearly independent

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent
Theorem: If a set of vectors containt the zero vector, then the set is linearly dependent

Algebraic properties of a matrix

Algebraic properties of a matrix (cont)

$(A B)^{\top}=B^{\top} A^{\top}$
For any scalar $r,(r A)^{\top}=r A^{\top}$

LU Factorization

Factorization of a matrix A is an equation that expresses A as a product of two or more matrices:
Synthesis: BC = A
Analysis: $A=B C$
Assumption: A is a $m \times n$ matrix that can be row reduced without interchanges
L : is a $m \times m$ unit lower triangular with 1 's on the diagonal

U : is a $m \times n$ echelon form of A
U is equal to $\mathrm{E}^{*} \mathrm{~A}=\mathrm{U}$, why $\mathrm{A}=\mathrm{E}^{1} \mathrm{U}=\mathrm{LU}$ where $\mathrm{L}=\mathrm{E}^{-1}$

See figure ** for how to find L and U
Find \mathbf{x} by first solving $\mathbf{L y}=\mathbf{b}$ and then solving Ux =y

Row Reduction and Echelon forms				
Leading entry	A leading entry refers to the leftmost non-zero entry in a row			
Echelon	Row equivalent systems can be reduced into several fifferent echelon forms			
Reduced	A system is only row			
echelon	equivalent to one REF			
form		\quad	Forward	Reducing an augmented matrix
:---	:---			
phase	A into an echelon form			

Subspaces of R^n

A subspace of R^{n} is any set H in R^{n} that has three properties:

- The zero vector is in H
- For each \mathbf{u} and \mathbf{v} in H , the sum $\mathbf{u}+\mathbf{v}$ is in H
- For each \mathbf{u} in H and each scalar c, the vector Cu is in H

Zero subspace is the set containing only the zero vector in R^{n}

Column space is the set of all linear combinations of the columns of A .

Null space (Nul A) is the set of all solutions of the equation $\mathbf{A x}=\mathbf{0}$

Basis for a subspace H is the set of linearly independent vectors that span H

In general, the pivot columns of A form a basis for col A

The number of vectors in any basis is unique. We call this numberdimension

The rank of a matrix A, denoted by rank
A, is the dimension of the column space of A

Determine whether b is in the col A.
Solution: b is only in col A if the equation $A x$
$=\mathrm{b}$ has a solution

Matrix and $A(u+v)=A u+A v$
vector
sum
Matrix, $\quad \mathrm{A}(c \mathbf{u})=c(\mathrm{Au})$
vector and
scalar
Associ- $\quad A(B C)=(A B) C$
ative law
Left distri- $\quad A(B+C)=A B+A C$
butive law
Right $\quad(B+C)=B A+B C$
distributive
law
Scalar $\quad r(A B)=(r A) B=A(r B)$
multiplic-
ation
Identity $\quad \|^{m} A=A=A P$
matrix
multi
Commute If $A B=B A$ then we say that A and B commute with each others
$\left(A^{\top}\right)^{\top}=A$
$(A+B)^{\top}=A^{\top}+B^{\top}$

By gustavhelms

Not published yet.
Last updated 11th June, 2022.
Page 2 of 4 .

Sponsored by Readable.com Measure your website readability! https://readable.com

Algebraic properties of a vector
$u+v=v+u$
$(u+v)+w=u+(v+w)$
$\mathbf{u}+(\mathbf{u})=-\mathbf{u}+\mathbf{u}$
$c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
$c(d \mathbf{u})=(c d) \mathbf{u}$

By gustavhelms
cheatography.com/gustavhelms/

Not published yet.
Last updated 11th June, 2022.
Page 3 of 4 .

Sponsored by Readable.com

Measure your website readability!
https://readable.com

