

Linear Algebra Cheat Sheet by gustavhelms via cheatography.com/146840/cs/31828/

Linear Systems		Linear Transformations		Linear Transformations (cont)	
Solution	Can have no solution , one solution or infinitly many .	Tranfo- rmatio-	T(x) from R ⁿ to R ^m	Pivot in every Then 7 column? one	
	The solution is the interserction	n/m- apping		To determine whether a vector range of a T . Solution : Let T(x)	
Solution set	The set of all possible solutions	Image	For x in R^n the vector $T(x)$ in R^m is called the image	the matrix equation Ax = c. If the consistent, then c is in the range	
Consistency	A system is consistent if there is at least one solution	Range	The set of all images of the vectors in the domain of T(x)	The Invertible Matrix Theorem	
Equivalent	otherwise it is inconsistent Linear systems are equivalent if they have the	Criterion for a transf-	1. $T(u + v) = T(u) + T(v)$ 2. $T(cU) = cT(U)$	The following statements are e either they are all true or all fals (nxn) matrix	
	same solution set	ormation		A is an invertible matrix.	
Row operations	Replacement, interchange and scaling	to be linear		A is row equivalent to the $n \times n$ in matrix	
Row equivalent	row operations between two linear systems then the	Standard Matrix	The matrix A for a linear transformation T, that satisfies T(x) = Ax for all x in R ⁿ A mapping T is said to be onto if each b in the codomain is the image of at least one x in the domain. Range = Codomain. Solution existance. ColA must	A has n pivot positions.	
				The equation $Ax = 0$ has only the trivial solution	
		Onto		The columns of <i>A</i> form a linear ndent set	
Existence				The linear transformation $\mathbf{x} \mapsto A$ one-to-one.	
LAISTOTICO	(i.e. consistent)		match codomain.	The equation $A\mathbf{x} = \mathbf{b}$ has at least	
Uniqueness	Is the solution unique	One-to-	If each b in the codomain is	solution for each b in R ⁿ	
Homogenous	A system is homogenous if	one	only the image at most one x in	The columns of A span R n	
	it can be written in the form $A\mathbf{x} = 0$		the domain . Solution Uniqueness.	The linear transformation $x \mapsto A$ maps R^n onto R^n	
Trivial solution	If a system only has a the solution x = 0. A system		T is one-to-one if and only if the cols of A are linearly indepe	There is an $n \times n$ matrix C such that $A = I$.	
	with no free variable only have the trivial solution.	Free variable?	If the system has a free variable, then the system is not one-to-one. I.e. the homogenous system only has the trivial solution	There is an $n \times n$ matrix D such $D = I$.	
Non-trivial solution	A nonzero vector that satisfies A x = 0. Has free variable.			A^{T} is an invertible matrix.	
				The columns of A form a basis	
				Col A = R^n	
Inverser of a M	atrix	Pivot in	Then T is onto	Dim Col A = n	
		01/05/			

Pivot in every column?	Then T is one-to- one			
To determine whether a vector \mathbf{c} is in the range of a T. Solution: Let $T(x) = Ax$. Solve the matrix equation $Ax = c$. If the system is consistent , then c is in the range of T.				
The Invertible Matri	x Theorem			
The following statements are equivalent i.e. either they are all true or all false. Let A be a (nxn) matrix				
A is an invertible ma	atrix.			
${\it A}$ is row equivalent matrix	to the $n \times n$ identity			
A has n pivot position	ons.			
The equation $Ax = 0$ trivial solution	has only the			
The columns of <i>A</i> for ndent set	orm a linearly indepe-			
The linear transform one-to-one.	nation $\mathbf{x} \mapsto A\mathbf{x}$ is			
The equation $A\mathbf{x} = \mathbf{b}$ solution for each \mathbf{b} is				
The columns of A s	pan R ⁿ			
The linear transform maps R ⁿ onto R ⁿ	nation $\mathbf{x} \mapsto A\mathbf{x}$			
There is an $n \times n$ ma $\Box A = I.$	trix C such that \square			
There is an $n \times n$ ma $\Box D = I.$	trix D such that \square			
A^{T} is an invertible m	natrix.			
The columns of A fo	orm a basis of R^n			
Col A = R^n				
Dim Col A = n				
Rank A = n				
Nul A = {0}				
Dim Nul A = 0				
The number 0 is no	t an eigenvalue of A			
The determinant of	A is not 0			

 $(A^{-1})^{-1} = A$ $(AB)^{-1} = B^{-1}A^{-1}$

By gustavhelms

C is invertible if $CA = I^n$ and $AC = I^n$

If **A** is (2x2) then, $A^{-1} =$

Not published yet. Last updated 11th June, 2022. Page 1 of 4.

every

row?

Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/gustavhelms/

Linear Algebra Cheat Sheet by gustavhelms via cheatography.com/146840/cs/31828/

Elementary Matrices

Elementary Matrix Is obtained by performing a single elementary row operation on an **identity matrix**

Each elementary matrix E is invertible

A nxn matrix A is invertible if and only if A is row equivalent to Iⁿ.

$$A = E^{-1}I^{n}$$
 and $A^{-1} = EI^{n} = I^{n}$

Row reduce the augmented matrix [A I] to [I A^{-1}]

NOTE If A is not row equivalent to I then A is not invertible

Linear Independence

A set of vectors are **linearly independent** if they cannot be created by any linear combinations of earlier vectors in the set.

If a set of vectors are linear independent, then the solution is unique

If the vector equeation c1v1 + c2v2 + ... + cp*vp = 0 only has a **trivial solution** the set of vectors are **linearly independent**

Theorem: If a set contains more vectors than there are entries in each vector, then the set is **linearly dependent**

Theorem: If a set of vectors containt the zero vector, then the set is **linearly** dependent

Algebraic properties of a matrix

Algebraic properties of a matrix (cont)

 $(AB)^T = B^T A^T$

For any scalar r, $(rA)^T = rA^T$

LU Factorization

Factorization of a matrix A is an equation that expresses A as a product of two or more matrices:

Synthesis: BC = A Analysis: A= BC

Assumption: A is a mxn matrix that can be row reduced without **interchanges**

L: is a $m \times m$ unit lower triangular with 1's on the diagonal

U: is a mxn echelon form of A

U is equal to $E^*A = U$, why $A = E^1U = LU$ where $L = E^{-1}$

See figure ** for how to find L and U

Find **x** by first solving **Ly** = **b** and then solving **Ux** = **y**

Row Reduction and Echelon forms

Leading entry	A leading entry refers to the leftmost non-zero entry in a row
Echelon form	Row equivalent systems can be reduced into several different echelon forms
Reduced echelon form	A system is only row equivalent to one REF
Forward phase	Reducing an augmented matrix A into an echelon form
Backward phase	Reducing an augmented matrix A into a reduced echelon form
Basic variables	Variables in pivot columns .
Free variables	Variables that are not in pivot columns . When a system has a free variable the system is consistent but not unique

Subspaces of R^n

A **subspace** of Rⁿ is any set H in Rⁿ that has three properties:

- The zero vector is in H
- For each ${\bf u}$ and ${\bf v}$ in H, the sum ${\bf u}$ + ${\bf v}$ is in H
- For each ${\bf u}$ in H and each scalar c, the vector $c{\bf u}$ is in H

Zero subspace is the set containing only the **zero vector** in Rⁿ

Column space is the set of all linear combinations of the columns of A.

Null space (Nul A) is the set of all solutions of the equation **Ax = 0**

Basis for a subspace H is the set of linearly independent vectors that span H

In general, the **pivot columns** of A form a basis for col A

The number of vectors in any basis is **unique**. We call this number **dimension**

The rank of a matrix A, denoted by rank A, is the dimension of the column space of A

Determine whether b is in the col A.

Solution: b is only in col A if the equation Ax = b has a solution

Matrix and vector sum	A(u + v) = Au + Av
Matrix, vector and scalar	$A(c\mathbf{u}) = c(A\mathbf{u})$
Associ- ative law	A(BC) = (AB)C
Left distri- butive law	A (B + C) = AB + AC
Right distributive law	(B + C) = BA + BC
Scalar multiplic- ation	r(AB) = (rA)B = A(rB)
Identity matrix multi	$I^m A = A = AI^n$
Commute	If AB = BA then we say that A and B commute with each others
	$(A^T)^T = A$
	$(A + B)^T = A^T + B^T$

By gustavhelms

cheatography.com/gustavhelms/

Not published yet. Last updated 11th June, 2022. Page 2 of 4. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Linear Algebra Cheat Sheet by gustavhelms via cheatography.com/146840/cs/31828/

Algebraic properties of a vector

u + v = v + u

(u + v) + w = u + (v + w)

u + (-u) = -u + u

 $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

 $c(a\mathbf{u}) = (ca)\mathbf{u}$

By gustavhelms

cheatography.com/gustavhelms/

Not published yet. Last updated 11th June, 2022. Page 3 of 4. Sponsored by Readable.com

Measure your website readability!

https://readable.com