## Cheatography

### Linear Algebra Cheat Sheet by gustavhelms via cheatography.com/146840/cs/31828/

| Linear Systems                                                        |                                                                                                                                                                                       |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Solution                                                              | Can have <b>no solution</b> , <b>one</b><br><b>solution</b> or <b>infinitly many</b> .<br>The solution is the <b>inters</b> -<br><b>erction</b>                                       |  |
| Solution set                                                          | The set of all possible solutions                                                                                                                                                     |  |
| Consistency                                                           | A system is <b>consistent</b> if<br>there is at least one solution<br>otherwise it is <b>inconsistent</b>                                                                             |  |
| Equivalent                                                            | Linear systems are<br>equivalent if they have the<br>same solution set                                                                                                                |  |
| Row<br>operations                                                     | Replacement, interchange and scaling                                                                                                                                                  |  |
| Row<br>equivalent                                                     | If there is a sequence of<br>row operations between<br>two linear systems then the<br>systems are row equivalent.<br>Systems that are row<br>equivalent has the same<br>solution set. |  |
| Existence                                                             | If a system has a solution (i.e. <b>consistent</b> )                                                                                                                                  |  |
| Uniqueness                                                            | Is the solution unique                                                                                                                                                                |  |
| Homogenous                                                            | A system is <b>homogenous</b> if<br>it can be written in the form<br>$A\mathbf{x} = 0$                                                                                                |  |
| Trivial<br>solution                                                   | If a system only has a the solution $\mathbf{x} = 0$ . A system with no <b>free variable</b> only have the trivial solution.                                                          |  |
| Non-trivial solution                                                  | A <b>nonzero</b> vector that<br>satisfies A <b>x</b> = 0. Has free<br>variable.                                                                                                       |  |
| Inverser of a Matrix                                                  |                                                                                                                                                                                       |  |
| <b>C</b> is invertible if <b>CA</b> = $I^{n}$ and <b>AC</b> = $I^{n}$ |                                                                                                                                                                                       |  |

```
C is invertible if CA = 1° and AC = 1°

If A is (2x2) then, A^{-1} =

(A^{-1})^{-1} = A

(AB)^{-1} = B^{-1}A^{-1}

(A^{T})^{-1} = (A^{-1})^{T}
```



By gustavhelms

| Tranfo-<br>rmatio-<br>n/m-<br>apping                         | $T(x)$ from $R^n$ to $R^m$                                                                                                                                                                   |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image                                                        | For x in $\mathbb{R}^{n}$ the vector T(x) in $\mathbb{R}^{m}$ is called the image                                                                                                            |
| Range                                                        | The set of all <b>images</b> of the vectors in the <b>domain</b> of T(x)                                                                                                                     |
| Criterion<br>for a<br>transf-<br>ormation<br>to be<br>linear | 1. T(u + v) = T(u) + T(v)<br>2. T(cU) = cT(U)                                                                                                                                                |
| Standard<br>Matrix                                           | The matrix A for a linear transformation T, that satisfies $T(x) = Ax$ for all x in $R^n$                                                                                                    |
| Onto                                                         | A mapping T is said to be <b>onto</b><br>if each b in the codomain is the<br>image of at least one x in the<br>domain. Range = Codomain.<br>Solution existance. ColA must<br>match codomain. |
| One-to-<br>one                                               | If each b in the <b>codomain</b> is<br>only the image <b>at most</b> one x in<br>the <b>domain</b> . Solution Unique-<br>ness.                                                               |
|                                                              | T is one-to-one if and only if the cols of A are <b>linearly indepe-</b><br>ndent                                                                                                            |
| Free<br>variable?                                            | If the system has a free<br>variable, then the system is <b>not</b><br>one-to-one. I.e. the<br>homogenous system only has<br>the trivial solution                                            |
| Pivot in<br>every<br>row?                                    | Then T is onto                                                                                                                                                                               |

Not published yet. Last updated 11th June, 2022. Page 1 of 4.

| Linear Transformation                                                                                                                                                                                     | s (cont)                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
| Pivot in every column?                                                                                                                                                                                    | Then T is one-to-<br>one                            |  |
| To determine whether a vector <b>c</b> is in the range of a <b>T</b> . Solution: Let $T(x) = Ax$ . Solve the matrix equation $Ax = c$ . If the system is <b>consistent</b> , then c is in the range of T. |                                                     |  |
| The Invertible Matrix T                                                                                                                                                                                   | heorem                                              |  |
| The following statemen<br>either they are all true<br>( <i>n</i> x <i>n</i> ) matrix                                                                                                                      | nts are equivalent i.e.<br>or all false. Let A be a |  |
| A is an invertible matrix                                                                                                                                                                                 | х.                                                  |  |
| A is row equivalent to t<br>matrix                                                                                                                                                                        | the <i>n</i> × <i>n</i> identity                    |  |
| A has n pivot positions                                                                                                                                                                                   |                                                     |  |
| The equation $A\mathbf{x} = 0$ has trivial solution                                                                                                                                                       | as only the                                         |  |
| The columns of A form ndent set                                                                                                                                                                           | a linearly indepe-                                  |  |
| The linear transformation one-to-one.                                                                                                                                                                     | ion $\mathbf{x} \mapsto A\mathbf{x}$ is             |  |
| The equation $A\mathbf{x} = \mathbf{b}$ has<br>solution for each $\mathbf{b}$ in F                                                                                                                        | as at least one<br>R <sup>n</sup>                   |  |
| The columns of A spar                                                                                                                                                                                     | ו R <sup>n</sup>                                    |  |
| The linear transformati<br>maps R <sup>n</sup> onto R <sup>n</sup>                                                                                                                                        | ion $\mathbf{x} \mapsto A\mathbf{x}$                |  |
| There is an $n \times n$ matrix $\Box A = I$ .                                                                                                                                                            | $C$ such that $\Box$                                |  |
| There is an $n \times n$ matrix<br>$\Box D = I$ .                                                                                                                                                         | $D$ such that $\Box$                                |  |
| $A^{T}$ is an invertible matrix                                                                                                                                                                           | rix.                                                |  |
| The columns of A form                                                                                                                                                                                     | a basis of R^n                                      |  |
| Col A = R^n                                                                                                                                                                                               |                                                     |  |
| Dim Col A = n                                                                                                                                                                                             |                                                     |  |

https://apollopad.com

Rank A = n

Nul A =  $\{0\}$ 

Yours!

Dim Nul A = 0

The number 0 is not an eigenvalue of A

The determinant of A is not 0

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish

cheatography.com/gustavhelms/

## Cheatography

### Linear Algebra Cheat Sheet by gustavhelms via cheatography.com/146840/cs/31828/

#### **Elementary Matrices**

Elementary Matrix Is obtained by performing a single elementary row operation on an identity matrix

Each elementary matrix E is invertible

A nxn matrix A is invertible if and only if A is row equivalent to I<sup>n</sup>.

 $A = E^{-1}I^{n}$  and  $A^{-1} = EI^{n} = I^{n}$ 

Row reduce the augmented matrix [ A I ] to [ I  $A^{-1}$ ]

**NOTE** If A is not row equivalent to I then A is not invertible

#### Linear Independence

A set of vectors are **linearly independent** if they cannot be created by any linear combinations of earlier vectors in the set.

If a set of vectors are **linear independent**, then the solution is **unique** 

If the vector equeation  $c1v1 + c2v2 + ... + cp^*vp = 0$  only has a **trivial solution** the set of vectors are **linearly independent** 

Theorem: If a set contains more vectors than there are entries in each vector, then the set is **linearly dependent** 

Theorem: If a set of vectors containt the zero vector, then the set is **linearly** dependent

Algebraic properties of a matrix

#### Algebraic properties of a matrix (cont)

 $(AB)^{\mathsf{T}} = B^{\mathsf{T}} A^{\mathsf{T}}$ 

For any scalar r,  $(rA)^T = rA^T$ 

#### LU Factorization

Factorization of a matrix A is an equation that expresses A as a **product** of two or more matrices:

Synthesis: BC = A Analysis: A= BC

**Assumption:** A is a *m*x*n* matrix that can be row reduced without **interchanges** 

L: is a *m*x*m* unit lower triangular with 1's on the diagonal

U: is a *m*x*n* echelon form of A

U is equal to  $E^*A = U$ , why  $A = E^{-1}U = LU$ where  $L = E^{-1}$ 

See figure \*\* for how to find L and U

Find **x** by first solving Ly = b and then solving Ux = y

#### Row Reduction and Echelon forms

| Leading<br>entry           | A leading entry refers to the<br>leftmost <b>non-zero</b> entry in a<br>row                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Echelon<br>form            | Row equivalent systems can<br>be reduced into <b>several</b><br><b>different</b> echelon forms                                                           |
| Reduced<br>echelon<br>form | A system is only row<br>equivalent to <b>one</b> REF                                                                                                     |
| Forward<br>phase           | Reducing an augmented matrix<br>A into an <b>echelon form</b>                                                                                            |
| Backward<br>phase          | Reducing an augmented matrix<br>A into a <b>reduced echelon form</b>                                                                                     |
| Basic<br>variables         | Variables in <b>pivot columns</b> .                                                                                                                      |
| Free<br>variables          | Variables that are not in <b>pivot</b><br><b>columns</b> . When a system has<br>a free variable the system is<br><b>consistent</b> but not <b>unique</b> |

#### Subspaces of R<sup>n</sup>

A **subspace** of R<sup>n</sup> is any set H in R<sup>n</sup> that has three properties:

- The zero vector is in H

- For each  ${\bf u}$  and  ${\bf v}$  in H, the sum  ${\bf u}$  +  ${\bf v}$  is in H

- For each **u** in *H* and each scalar *c*, the vector *c***u** is in *H* 

**Zero subspace** is the set containing only the **zero vector** in  $\mathbb{R}^n$ 

**Column space** is the set of all linear combinations of the columns of A.

Null space (Nul A) is the set of all solutions of the equation Ax = 0

Basis for a subspace H is the set of linearly independent vectors that span H

In general, the **pivot columns** of A form a basis for col A

The number of vectors in any basis is **unique**. We call this number **dimension** 

The **rank** of a matrix *A*, denoted by **rank** *A*, is the **dimension** of the **column space** of *A* 

Determine whether b is in the col A. Solution: b is only in col A if the equation Ax = b has a solution

| Matrix and<br>vector<br>sum     | $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$                  |
|---------------------------------|---------------------------------------------------------------------------|
| Matrix,<br>vector and<br>scalar | $A(c\mathbf{u}) = c(A\mathbf{u})$                                         |
| Associ-<br>ative law            | A(BC) = (AB)C                                                             |
| Left distri-<br>butive law      | A (B + C) = AB + AC                                                       |
| Right<br>distributive<br>law    | (B + C) = BA + BC                                                         |
| Scalar<br>multiplic-<br>ation   | r(AB) = (rA)B = A(rB)                                                     |
| ldentity<br>matrix<br>multi     | $I^m A = A = A I^n$                                                       |
| Commute                         | If AB = BA then we say that A<br>and B <b>commute</b> with each<br>others |
|                                 | $(A^T)^T = A$                                                             |
|                                 | $(A + B)^{T} = A^{T} + B^{T}$                                             |



By gustavhelms

cheatography.com/gustavhelms/

Not published yet. Last updated 11th June, 2022. Page 2 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

# Cheatography

## Linear Algebra Cheat Sheet by gustavhelms via cheatography.com/146840/cs/31828/

### Algebraic properties of a vector

u + v = v + u (u + v) + w = u + (v + w) u + (-u) = -u + u c(u + v) = cu + cvc(du) = (cd)u



#### By gustavhelms

Not published yet. Last updated 11th June, 2022. Page 3 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/gustavhelms/