AP Stats Chapter 10 Cheat Sheet
 by GSarkar via cheatography.com/76104/cs/18822/

Two Proportion Confidence Interval	
Shape	When the large counts rule is met, the sampling distribution of $p^{1}-p^{2}$ is approximately normal
Center	The mean of the sampling distribution is $p^{1}-p^{2}$
Spread	The standard deviation of the sampling distribution of p^{1-} p^{2} is the square root of the sum of $\left(p^{1}\right)\left(1-p^{1}\right)$ divided by n^{1} and $\left(p^{2}\right)\left(1-p^{2}\right)$ divided by n^{2} as long as each sample is no more than 10% of its population.
Conditions	Random (both samples must be random), 10\% (both samples less than 10% of respective population), Large Counts (for both samples individually)
Calculator	2-PropZInterval
Interpretatio n	We are \qquad \% confident that the interval from \qquad to \qquad captures the true difference of $\left[p^{1}\right]$ and $\left[p^{2}\right]$
Point Estimate Formula	$p^{1}-p^{2}$
Critical Value Formula (Z*)	invNorm(\quad \%/2 + 0.5)
Standard Deviation Formula	the square root of the sum of $\left(p^{1}\right)\left(1-p^{1}\right)$ divided by n^{1} and $\left(p^{2}\right)\left(1-p^{2}\right)$ divided by n^{2}
Confidence Interval Formula	Point Estimate +/- Critical Value * Standard Deviation

Two Proportion Significance Test	
Null Hypothesis	$p^{1}-p^{2}=$ Hypothesized Value
Alternative Hypothesis	$p^{1}-p^{2}=$ Hypothesized Value
Conditions	Random (both), 10\% (both), Large Counts (both)
Pooled Sample Proportion	$x^{1}+x^{2} / n^{11}+n^{2}$ (successes / size)
Statistic	$p^{1}-p^{2}$
Parameter	Hypothesized Value (often 0)
Standard Deviation	The square root of the sum of (pc)(1-pc) divided by n^{11} and $\left(p^{c}\right)\left(1-p^{c}\right)$ divided by n^{2}
Test Statistic Formula	Statistic - Parameter / Standard Deviation

Two Proportion Significance Test (cont)	
Calculator	2PropZTest
Areas of Error	Not a random sample = can't generalize results, cause and effect vs correlation
IMPORTANT	If experimental units are randomly selected, check the 10\%, otherwise technically not necessary
Ideal for Conclusions about Populations	Data from Two Independent Random Samples

Two Mean Confidence Interval	
Shape	When the population distributions are normal, the sampling distribution of $x^{1}-x^{2}$ is approximately normal. Also normal, if both sample sizes are greater than 30 by CLT
Center	$\mu^{1}-\mu^{2}$
Spread	If both samples are less than 10% of respective populations, the formula for standard deviation is the square root of the sum of $\sigma 1^{2} / n^{1}$ and $\sigma 2^{2} / n^{2}$
Conditions	Random (both samples are independent and random or from two groups in a randomized experiment), 10\% (both), and Normal/Large (population distributions are normal or sample size greater than 30)
Calculator	2SampTInt
Interpretatio n of a Confidence Level	If we take many samples of size _ of _ and of _ of _ and find the __\% confidence interval for each sample, __\% of the confidence intervals will capture the difference in the mean number of \qquad .
Interpretatio n of Confidence Interval	We are \qquad \% confident that the interval from \qquad to \qquad captures the true difference in the \qquad

By GSarkar

cheatography.com/gsarkar/

Not published yet.
Last updated 14th February, 2019.
Page 1 of 2 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

Two Mean Confidence Interval (cont)	
State	We want to estimate $\mu^{1}-\mu^{2}$ at the \qquad \% confidence level where μ^{1} is \qquad and μ^{2} is \qquad
Point Estimate Formula	$\mathrm{x}^{1}-\mathrm{x}^{2}$
Critical Value Formula (t^{\star})	$\operatorname{invT}(\mathrm{p} / 2+0.5$, smaller n df)
Standard Deviation/Error Formula	The square root of the sum of $\sigma 1^{2} / \mathrm{n}^{1}$ and $\sigma 2^{2} / \mathrm{n}^{2}$
Confidence Interval Formula	Point Estimate +/- Critical Value * Standard Deviation

Two Mean Significance Test		
Null Hypothesis	$\mu^{1}-\mu^{2}=$ Hypothesized Value	
Alternative Hypothesis	$\mu^{1}-\mu^{2}=$ Hypothesized Value	
Conditions	Random (both), 10\% (both), Normal/Large (both)(no strong skew, outliers, or greater than 30)	
Statistic	$\mathrm{x}^{1}-\mathrm{x}^{2}$	
Parameter	$\mu^{1}-\mu^{2}$	
Standard Deviation	The square root of the sum of $s 1^{2} / n^{1}$ and $s 2^{2} / n^{2}$	
Test Statistic Formula (T)	Statistic - Parameter / Standard Deviation	
Calculator	2SampTTest	
Interpretati on of p value	Assuming the null hypothesis is true, there is a \qquad probability of getting a difference in \qquad just by the chance involved in random assignment/variability	
Paired Data vs Two Samples		
Paired Data		Two Samples
Subjects were paired and the split at random into the two treatment groups or each subject received both treatments in a random order		Experimental groups were formed using randomized design or two independent random samples were taken from the population

By GSarkar
 cheatography.com/gsarkar/

Not published yet.
Last updated 14th February, 2019.
Page 2 of 2.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

