Cheatography

AP Stats Chapter 10 Cheat Sheet by GSarkar via cheatography.com/76104/cs/18822/

Two Proportion Confidence Interval		
Shape	When the large counts rule is met, the sampling distribution of p^1 - p^2 is approximately normal	
Center	The mean of the sampling distribution is p^1 - p^2	
Spread	The standard deviation of the sampling distribution of $p^1 - p^2$ is the square root of the sum of $(p^1)(1-p^1)$ divided by n^1 and $(p^2)(1-p^2)$ divided by n^2 as long as each sample is no more than 10% of its population.	
Conditions	Random (both samples must be random), 10% (both samples less than 10% of respective population), Large Counts (for both samples individually)	
Calculator	2-PropZInterval	
Interpretatio n	We are% confident that the interval from to captures the true difference of $[p^1]$ and $[p^2]$	
Point Estimate Formula	p ¹ - p ²	
Critical Value Formula (Z*)	invNorm(%/2 + 0.5)	
Standard Deviation Formula	the square root of the sum of $(p^1)(1\text{-}p^1)$ divided by n^1 and $(p^2)(1\text{-}p^2)$ divided by n^2	
Confidence Interval Formula	Point Estimate +/- Critical Value * Standard Deviation	

Two Proportion Significance Test

Null Hypothesis	p ¹ - p ² = Hypothesized Value
Alternative Hypothesis	p ¹ - p ² = Hypothesized Value
Conditions	Random (both), 10% (both), Large Counts (both)
Pooled Sample Proportion	$x^1 + x^2 / n^1 + n^2$ (successes / size)
Statistic	p ¹ - p ²
Parameter	Hypothesized Value (often 0)
Standard Deviation	The square root of the sum of (pc)(1-pc) divided by n^1 and (pc)(1-pc) divided by n^2
Test Statistic Formula	Statistic - Parameter / Standard Deviation

Two Proportion Significance Test (cont)				
Calculator	2PropZTest			
Areas of Erro	Not a random sample = can't generalize results, cause and effect vs correlation			
IMPORTANT	If experimental units are randomly selected, check the 10%, otherwise technically not necessary			
Ideal for Conclusions Populations	Data from Two Independent Random Samples about			
Two Mean C	confidence Interval			
Shape	When the population distributions are normal, the sampling distribution of $x^1 - x^2$ is approximately normal. Also normal, if both sample sizes are greater than 30 by CLT			
Center	μ ¹ - μ ²			
Spread	If both samples are less than 10% of respective populations, the formula for standard deviation is the square root of the sum of $\sigma 1^2$ / n^1 and $\sigma 2^2$ / n^2			
Conditions	Random (both samples are independent and random or from two groups in a randomized experiment), 10% (both), and Normal/Large (population distributions are normal or sample size greater than 30)			
Calculator	2SampTInt			
Interpretatio n of a Confidence Level	If we take many samples of size _ of _ and of _ of _ and find the% confidence interval for each sample,% of the confidence intervals will capture the difference in the mean number of			
Interpretatio n of Confidence Interval	We are% confident that the interval from to captures the true difference in the			

By **GSarkar** cheatography.com/gsarkar/

Not published yet. Last updated 14th February, 2019. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

AP Stats Chapter 10 Cheat Sheet by GSarkar via cheatography.com/76104/cs/18822/

Two Mean Confidence Interval (cont)				
State	We want to estimate μ^1 - μ^2 at the% confidence level where μ^1 is and μ^2 is			
Point Estimate Formula	x ¹ - x ²			
Critical Value Formula (t*)	invT(p/2 + 0.5, smaller n df)			
Standard Deviation/Error Formula	The square root of the sum of $\sigma 1^2$ / n^1 and $\sigma 2^2$ / n^2			
Confidence Interval Formula	Point Estimate +/- Critical Value * Standard Deviation			

Two Mean Significance Test		
Null Hypothesis	$\mu^1 - \mu^2 =$ Hypothesized Value	
Alternative Hypothesis	$\mu^1 - \mu^2 =$ Hypothesized Value	
Conditions	Random (both), 10% (both), Normal/Large (both)(no strong skew, outliers, or greater than 30)	
Statistic	x ¹ - x ²	
Parameter	μ ¹ - μ ²	
Standard Deviation	The square root of the sum of $s1^2$ / n^1 and $s2^2$ / n^2	
Test Statistic Formula (T)	Statistic - Parameter / Standard Deviation	
Calculator	2SampTTest	
Interpretati on of p- value	Assuming the null hypothesis is true, there is a probability of getting a difference in just by the chance involved in random assignment/variability	

Paired Data vs Two Samples

Paired Data	Two Samples
Subjects were paired and the split at	Experimental groups were formed
random into the two treatment	using randomized design or two
groups or each subject received	independent random samples
both treatments in a random order	were taken from the population

By GSarkar

cheatography.com/gsarkar/

Not published yet. Last updated 14th February, 2019. Page 2 of 2. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com