Cheatography

Molecular Biology- Translation Cheat Sheet by green.tortellini via cheatography.com/197925/cs/41827/

Ribosome Structure & Synthesis						
Structure	Synthesis					
Large ribonucleoprotein (RNP) complexes that contain large amounts of RNA	Synthesis is complex and energetically demandind					
Highly conserved	Ribosomes are produced in abundance to make necessary proteins					
Have a large and small subunit. Translation occurs at the interface, where the two subunits meet	Specialised proteins for ribosome synthesis are also produced in abundance					
Codon anticodon binding occurs on small subunit (decoding centre), peptide bond formation occurs on large subunit (peptidyltransferase centre- PTC)	rRNA transcription and processing occur in nucleoli which are found in the nucleus					
3 binding sites are found on the interface: A, P, E	Ribosomal subunits are generated and are only functional in the cytoplasm, they do not work in the nucleus					
Charged tRNA initially binds to A site, the	en moves to P site and					

peptide bond forms, finally tRNA moves to E site, and then leaves the ribosome

Peptidyltransfer and Translation Steps						
Peptidyltransfer	Initiation	Elongation	Termin- ation			
Charging	The start	Two tRNAs are bound to	Termin-			
enzymes attach	codon	the ribosome at one time;	ation/-			
amino acid to	must be	A and P sites (pre-tran-	release			
the 3' end of the	directed	slocation state), or P and	factors			
tRNA via a	to the P	E sites (post-transl-	recognise			
carboxylic ester	site to	ocation state, ribosome	the stop			
linkage to a	start	has moved along the	codon			
carboxyl group	transl-	RNA)				
	ation					

	Peptidyitrans	fer and Translation Step	os (cont)	
	Amino acids are added to the carboxyl end of the polype- ptide chain	Prokaryotes: a nucleotide sequence close to the start codon pairs with rRNA	Elongation factors are proteins that aid the elongation process. There are different types for specific functions.	Initial binding of RF1 or RF2 (prokaryo- tes), or eRF1 (eukaryotes) causes peptide hydrolysis
	Peptidylt- ransfer reaction is the formation of a peptide bond between two amino acids	Allows initiation to occur on multiple sites along the sequence, useful for polycistronic mRNA	EF1A brings the charged tRNA to the ribosome	RF3 (proka- ryote) or eRF1 (eukaryote) allows release of RF1/RF2 from ribosome
	Aminoacyl tRNA- peptide bond is attached to the amino group	Eukaryotes: ribosome is targeted to the start of the transcript, the small subunit moves along the sequence until the start codon is recognised	EF2 aids the movement of ribosome along the mRNA chain	RF3 is a GTPase
	Peptidyl tRNA- peptide bond is attached to the carboxyl group	Small subunit moves along sequence until it recognises the start codon. Large subunit is recruited to start translation	Both are GTPases, and have the capacity to hydrolyse GTP to GDP. Each time an amino acid is added to the polype- ptide chain GTP is hydrolysed into GDP	

By g

By green.tortellini

cheatography.com/greentortellini/ Not published yet. Last updated 22nd December, 2023. Page 1 of 1. Sponsored by Readable.com Measure your website readability! https://readable.com