\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{green.tortellini} \pdfinfo{ /Title (molbio-proteins-and-dna.pdf) /Creator (Cheatography) /Author (green.tortellini) /Subject (MolBio - Proteins and DNA Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{6381A3} \definecolor{LightBackground}{HTML}{F5F7F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{MolBio - Proteins and DNA Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{green.tortellini} via \textcolor{DarkBackground}{\uline{cheatography.com/197925/cs/41819/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}green.tortellini \\ \uline{cheatography.com/green-tortellini} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 21st December, 2023.\\ Updated 21st December, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Protein Biochemistry}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Protein Functions}} & {\bf{Structure}} & {\bf{Post-translational modification \& Targeting}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} Different structures reflect unique function & Proteins are made up of amino acids with various side chains & Reversible (addition) or irreversible (removal) \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} Recognition of specific molecules: hormones, antibodies, DNA binding proteins & Amino acids have a hydrogen, central carbon, amino group, side chain, and a carboxyl group & Methylation is adding a CH3 group (eg histones to regulate gene expression) \tn % Row Count 16 (+ 7) % Row 3 \SetRowColor{white} Movement of molecules: porin, ferritin & Side chains: positive or negative charge, polar or nonpolar, different shapes and sizes & \seqsplit{Glycosylation} is adding sugar molecules (eg cell surface proteins) \tn % Row Count 23 (+ 7) % Row 4 \SetRowColor{LightBackground} Structural functions: components of the cytoskeleton such as microtubules & Primary structure: order of amino acids in a polypeptide chain, joined by peptide bonds (which are rigid), have a C and N-terminus & \seqsplit{Ubiquitination} is adding a 76 amino acid polypeptide which denotes protein is ready to be degraded \tn % Row Count 33 (+ 10) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Protein Biochemistry (cont)}} \tn % Row 5 \SetRowColor{LightBackground} Enzymes: speed up chemical reactions by lowering the activation energy required & Secondary structure: alpha helix or beta pleated sheet, stabilised by hydrogen bonds & \seqsplit{Phosphorylation} is adding PO3 group, regulates enzyme function \tn % Row Count 7 (+ 7) % Row 6 \SetRowColor{white} & Tertiary structure: tightly packed 3D structure, noncovalent interactions between side chains & Targeting is when proteins are transported to where they need to go in a cell \tn % Row Count 15 (+ 8) % Row 7 \SetRowColor{LightBackground} & Quaternary structure: complex with 2 or more subunits which can be identical or different & Many proteins have a short signal or localisation sequence indicating where they need to go, this is then removed \tn % Row Count 24 (+ 9) % Row 8 \SetRowColor{white} & Many proteins contain several different tightly packed domains, each carries out a specific function & \tn % Row Count 32 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{DNA Structure}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{DNA Structure}} & {\bf{Experimental Evidence}} & {\bf{Chromosome Structure}} & {\bf{DNA- Binding Proteins}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} DNA is made up of \seqsplit{nucleotides} & Chargaff used paper \seqsplit{chromatography} and looked at base \seqsplit{proportions}. \% purine = \% \seqsplit{pyrimidine} & \seqsplit{Chromosomes} are long DNA molecules \seqsplit{containing} genetic \seqsplit{information}, have \seqsplit{regulatory} sequences for proper \seqsplit{expression} and \seqsplit{replication} & Proteins bind to specific domains which can have a general affinity for DNA, or are sequence specific \tn % Row Count 16 (+ 13) % Row 2 \SetRowColor{LightBackground} \seqsplit{Nucleotides} have: \seqsplit{deoxyribose} ring, \seqsplit{nitrogenous} base, phosphate group & Wilkins and Franklin used X-Ray \seqsplit{crystallography}, found DNA is a helix with even structure & \seqsplit{Eukaryotic} \seqsplit{chromosomes} are linear, have a; \seqsplit{centromere}, and telomeres & \seqsplit{Transcriptional} \seqsplit{regulators} bind \seqsplit{regulatory} sequences near promoters to block or stimulate \seqsplit{transcription} (eg lac operon in E.coli) \tn % Row Count 29 (+ 13) % Row 3 \SetRowColor{white} Purines (adenine, guanine) have 2 rings, \seqsplit{pyrimidines} (cytosine, thymine, uracil) have 1 ring & Watson and Crick made a model: A-T and G-C hydrogen bonded base pairs, \seqsplit{antiparallel} strands, right handed double helix, one helical turn every 10.5 base pairs (3.4 nm), major and minor grooves & Bacteria have a smaller single circular \seqsplit{chromosome} & \seqsplit{Restriction} \seqsplit{endonucleases} are enzymes that cut DNA at specific \seqsplit{sequences.} Bacteria use them to restrict virus action, they can be used in the lab to \seqsplit{manipulate} DNA \tn % Row Count 49 (+ 20) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{DNA Structure (cont)}} \tn % Row 4 \SetRowColor{LightBackground} DNA is written from 5' to 3' & & Plasmids in \seqsplit{prokaryotes} can be passed between cells via \seqsplit{conjugation} & Histones are proteins that DNA wraps around to form \seqsplit{chromatin.} Not sequence specific \tn % Row Count 9 (+ 9) % Row 5 \SetRowColor{white} \mymulticolumn{4}{x{8.4cm}}{2 H bonds between adenine and thymine, 3 H bonds between cytosine and guanine} \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{DNA as Genetic Material}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Chromosomal Inheritance}} & {\bf{Transforming Principle}} & {\bf{Hershey-Chase Experiment}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Sutton \& Boveri investigated where genetic material is carried using cytology, and microscopy & Griffith worked on S. pneumoniae; S strain are pathogenic (have capsule), R strain is not & \seqsplit{Bacteriophage} T2 inject genetic material inside E.coli, investigated what this material is \tn % Row Count 11 (+ 8) % Row 2 \SetRowColor{LightBackground} Sutton used grasshoppers, Boveri used Ascaris worms \seqsplit{(roundworms).} Their chromosomes are large and few in number, making them easy to observe & When cell extract of dead S strain is injected to mice- no illness. When combined with live R strain and injected- illness & Labelled \seqsplit{bacteriophage} with radioactive isotopes. 32P for DNA, 35S for protein to deduce which is genetic material \tn % Row Count 22 (+ 11) % Row 3 \SetRowColor{white} Discovered chromosomes are important in reproduction and development & Bacteria are being transformed when combined, hereditary material is being passed & Allowed \seqsplit{bacteriophage} to inject unlabelled bacteria. Separated phage from bacteria using blender \tn % Row Count 30 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{DNA as Genetic Material (cont)}} \tn % Row 4 \SetRowColor{LightBackground} Discoveries matched those of Mendel's, and provided physical basis for his theories & Tested which molecule carries hereditary material, used enzymes which destroy specific molecules. & Centrifuged. Tested infected bacteria pellet with Geiger counter. \tn % Row Count 8 (+ 8) % Row 5 \SetRowColor{white} Suggested different combinations of chromosomes could cause variation; discovered genes, and the linear structure of chromosomes & Discovered DNA is responsible for \seqsplit{transformation}. Gene coding for the capsule is passed to R strain from S strain, making them pathogenic & \seqsplit{Bacteriophage} labelled 32P had made the bacteria radioactive, indicating DNA is genetic material \tn % Row Count 19 (+ 11) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{DNA Replication}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Semi- \seqsplit{Conservative} Replication}} & {\bf{Process of Replication}} & {\bf{Enzymes for Replication}} & {\bf{Leading and Lagging Strands \& Telomeres}} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} DNA strands are \seqsplit{complementary} & DNA strands separate and are used as templates for new strands & \seqsplit{Polymerase} adds \seqsplit{nucleotides} in a 5' to 3' direction, needs primer to start & Leading strand is 5' to 3', while the lagging strand is 3' to 5' direction \tn % Row Count 14 (+ 9) % Row 2 \SetRowColor{LightBackground} 3 theories for \seqsplit{replication:} \seqsplit{conservative}, \seqsplit{semi-conservative}, \seqsplit{dispersive} & \seqsplit{Replication} fork- region where DNA is being copied & Primase generates primer (usually RNA), a small stretch of \seqsplit{nucleotides} in a 5' to 3' \seqsplit{direction.} Removed \seqsplit{afterwards} and the gap is filled in (by \seqsplit{polymerase)} & \seqsplit{Replication} in lagging strand leads away from fork and is \seqsplit{discontinuous}. Strand is primed many times, so Okazaki fragments form. \tn % Row Count 30 (+ 16) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{DNA Replication (cont)}} \tn % Row 3 \SetRowColor{LightBackground} Meselson- Stahl used nitrogen isotopes to test which theory is correct. Grew E.coli in 15N (to make heavy DNA) and \seqsplit{transferred} to 14N & Origin of \seqsplit{replication-} where the hydrogen bonds are broken and the strands are pulled apart so \seqsplit{replication} can start & Single stranded binding proteins separate the DNA strands and prevent \seqsplit{reannealing} & Primer removal at the end of Okazaki fragments causes erosion of genetic material, telomeres solve this \tn % Row Count 14 (+ 14) % Row 4 \SetRowColor{white} Separated heavy and light DNA by \seqsplit{ultracentrifugation}, obtained a liquid gradient. & Humans have multiple origins of \seqsplit{replication}, E.coli have one & Helicase breaks the hydrogen bonds between bases and unwinds the helix & \seqsplit{Telomeres-} short stretches of \seqsplit{repetitive} DNA sequences at the end of \seqsplit{chromosomes}, some is lost after \seqsplit{replication} \tn % Row Count 26 (+ 12) % Row 5 \SetRowColor{LightBackground} Observed using UV light, after 1 \seqsplit{generation} DNA was hybrid. After 2+ \seqsplit{generations} it became lighter, proving \seqsplit{semi-conservative} \seqsplit{replication} & \seqsplit{Replication} is \seqsplit{bidirectional} & Ligase joins the stretches of DNA together into a single strand & Telomeres are effective where DNA needs to be passed on perfectly \tn % Row Count 40 (+ 14) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{1.8 cm} x{1.8 cm} x{1.8 cm} x{1.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{8.4cm}}{\bf\textcolor{white}{DNA Replication (cont)}} \tn % Row 6 \SetRowColor{LightBackground} & & \seqsplit{Topoisomerase} relieves pressure from \seqsplit{overwinding} around the \seqsplit{replication} bubble by making and resealing breaks in the DNA & \tn % Row Count 12 (+ 12) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}