MolBio - Proteins and DNA Cheat Sheet by green.tortellini via cheatography.com/197925/cs/41819/ | Protein Biochemistry | | | | |--|--|--|--| | Protein
Functions | Structure | Post-translational modification & Targeting | | | Different
structures
reflect unique
function | Proteins are made up of amino acids with various side chains | Reversible (addition)
or irreversible
(removal) | | | Recognition of
specific
molecules:
hormones,
antibodies,
DNA binding
proteins | Amino acids have a
hydrogen, central carbon,
amino group, side chain,
and a carboxyl group | Methylation is adding
a CH3 group (eg
histones to regulate
gene expression) | | | Movement of molecules: porin, ferritin | Side chains: positive or
negative charge, polar or
nonpolar, different
shapes and sizes | Glycosylation is
adding sugar
molecules (eg cell
surface proteins) | | | Structural functions: components of the cytosk-eleton such as microtubules | Primary structure: order of amino acids in a polypeptide chain, joined by peptide bonds (which are rigid), have a C and N-terminus | Ubiquitination is
adding a 76 amino
acid polypeptide
which denotes protein
is ready to be
degraded | | | Enzymes:
speed up
chemical
reactions by
lowering the
activation
energy
required | Secondary structure:
alpha helix or beta
pleated sheet, stabilised
by hydrogen bonds | Phosphorylation is
adding PO3 group,
regulates enzyme
function | | | | Tertiary structure: tightly packed 3D structure, noncovalent interactions between side chains | Targeting is when proteins are transported to where they need to go in a cell | | | | Quaternary structure:
complex with 2 or more
subunits which can be
identical or different | Many proteins have a
short signal or locali-
sation sequence
indicating where they
need to go, this is then
removed | | ### Protein Biochemistry (cont) Many proteins contain several different tightly packed domains, each carries out a specific function | DNA Structu | ure | | | |--|--|--|---| | DNA
Structure | Experimental Evidence | Chromosome
Structure | DNA- Binding
Proteins | | DNA is
made up
of nucleo-
tides | Chargaff used paper chromatography and looked at base proportions. % purine = % pyrimidine | Chromosomes are long DNA molecules containing genetic information, have regulatory sequences for proper expression and replication | Proteins bind to
specific
domains which
can have a
general affinity
for DNA, or are
sequence
specific | | Nucleo-
tides
have:
deoxyr-
ibose ring,
nitrog-
enous
base,
phosphate
group | Wilkins and Franklin used X- Ray crystallo- graphy, found DNA is a helix with even structure | Eukaryotic
chromo-
somes are
linear, have
a; centro-
mere, and
telomeres | Transcriptional regulators bind regulatory sequences near promoters to block or stimulate transcription (eg lac operon in E.coli) | | Purines (adenine, guanine) have 2 rings, pyrimi- dines (cytosine, thymine, uracil) have 1 ring | Watson and Crick
made a model: A-T
and G-C hydrogen
bonded base pairs,
antiparallel strands,
right handed double
helix, one helical
turn every 10.5
base pairs (3.4
nm), major and
minor grooves | Bacteria
have a
smaller
single
circular
chromosome | Restriction endonucleases are enzymes that cut DNA at specific sequences. Bacteria use them to restrict virus action, they can be used in the lab to manipulate DNA | By green.tortellini cheatography.com/green-tortellini/ Published 21st December, 2023. Last updated 21st December, 2023. Page 1 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com # MolBio - Proteins and DNA Cheat Sheet by green.tortellini via cheatography.com/197925/cs/41819/ #### DNA Structure (cont) DNA is Plasmids in prokaryotes Histones are proteins that written can be passed between DNA wraps around to form from 5' cells via conjugation chromatin. Not sequence to 3' specific 2 H bonds between adenine and thymine, 3 H bonds between cytosine and guanine | DNA as Genetic Material | | | | | |--|--|--|--|--| | Chromosomal Inheritance | Transforming Principle | Hershey-Chase
Experiment | | | | Sutton & Boveri invest-
igated where genetic
material is carried using
cytology, and
microscopy | Griffith worked on
S. pneumoniae; S
strain are
pathogenic (have
capsule), R strain
is not | Bacteriophage T2
inject genetic
material inside
E.coli, investigated
what this material
is | | | | Sutton used grassh-
oppers, Boveri used
Ascaris worms (round-
worms). Their chromo-
somes are large and few
in number, making them
easy to observe | When cell extract
of dead S strain is
injected to mice-
no illness. When
combined with live
R strain and
injected- illness | Labelled bacter- iophage with radioactive isotopes. 32P for DNA, 35S for protein to deduce which is genetic material | | | | Discovered chromosomes are important in reproduction and development | Bacteria are being
transformed when
combined,
hereditary material
is being passed | Allowed bacter- iophage to inject unlabelled bacteria. Separated phage from bacteria using blender | | | | Discoveries matched
those of Mendel's, and
provided physical basis
for his theories | Tested which molecule carries hereditary material, used enzymes which destroy specific molecules. | Centrifuged. Tested infected bacteria pellet with Geiger counter. | | | ### DNA as Genetic Material (cont) Suggested different combinations of chromosomes could cause variation; discovered genes, and the linear structure of chromosomes Discovered DNA is responsible for transformation. Gene coding for the capsule is passed to R strain from S strain, making them pathogenic Bacteriophage labelled 32P had made the bacteria radioactive, indicating DNA is genetic material | | P +3 | | | |---|---|--|--| | DNA Replication | | | | | Semi- Conservative Replication | Process of
Replication | Enzymes for Replication | Leading and
Lagging
Strands &
Telomeres | | DNA strands
are comple-
mentary | DNA
strands
separate
and are
used as
templates
for new
strands | Polymerase adds
nucleotides in a
5' to 3' direction,
needs primer to
start | Leading
strand is 5' to
3', while the
lagging strand
is 3' to 5'
direction | | 3 theories for
replication:
conservative,
semi-conserv-
ative,
dispersive | Replication
fork- region
where DNA
is being
copied | Primase
generates primer
(usually RNA), a
small stretch of
nucleotides in a
5' to 3' direction.
Removed
afterwards and
the gap is filled in
(by polymerase) | Replication in lagging strand leads away from fork and is discontinuous. Strand is primed many times, so Okazaki fragments form. | | Meselson-
Stahl used
nitrogen
isotopes to test
which theory is
correct. Grew
E.coli in 15N
(to make
heavy DNA)
and transf-
erred to 14N | Origin of replication-where the hydrogen bonds are broken and the strands are pulled apart so replication can start | Single stranded
binding proteins
separate the
DNA strands and
prevent reanne-
aling | Primer removal at the end of Okazaki fragments causes erosion of genetic material, telomeres solve this | By green.tortellini cheatography.com/green-tortellini/ Published 21st December, 2023. Last updated 21st December, 2023. Page 2 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com ## MolBio - Proteins and DNA Cheat Sheet by green.tortellini via cheatography.com/197925/cs/41819/ | DNA Replication (cont) | | | | |---|--|--|---| | Separated heavy and light DNA by ultracentrifugation, obtained a liquid gradient. | Humans have multiple origins of replic- ation, E.coli have one | Helicase
breaks the
hydrogen
bonds
between
bases and
unwinds
the helix | Telomeres- short
stretches of
repetitive DNA
sequences at the
end of chromo-
somes, some is
lost after replic-
ation | | Observed using UV
light, after 1
generation DNA was
hybrid. After 2+
generations it became
lighter, proving semi-
conservative replic-
ation | Replication is bidirectional | Ligase
joins the
stretches
of DNA
together
into a
single
strand | Telomeres are
effective where
DNA needs to be
passed on
perfectly | | | | Topoisomerase relieves pressure from overwinding around the replication bubble by making and resealing breaks in the DNA | | By green.tortellini cheatography.com/greentortellini/ Published 21st December, 2023. Last updated 21st December, 2023. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com