Cheatography

MolBio - Proteins and DNA Cheat Sheet by green.tortellini via cheatography.com/197925/cs/41819/

Protein Functions	Structure	Post-translational modification & Targeting
Different structures reflect unique function	Proteins are made up of amino acids with various side chains	Reversible (addition) or irreversible (removal)
Recognition of specific molecules: hormones, antibodies, DNA binding proteins	Amino acids have a hydrogen, central carbon, amino group, side chain, and a carboxyl group	Methylation is adding a CH3 group (eg histones to regulate gene expression)
Movement of molecules: porin, ferritin	Side chains: positive or negative charge, polar or nonpolar, different shapes and sizes	Glycosylation is adding sugar molecules (eg cell surface proteins)
Structural functions: components of the cytosk- eleton such as microtubules	Primary structure: order of amino acids in a polypeptide chain, joined by peptide bonds (which are rigid), have a C and N-terminus	Ubiquitination is adding a 76 amino acid polypeptide which denotes protein is ready to be degraded
Enzymes: speed up chemical reactions by lowering the activation energy required	Secondary structure: alpha helix or beta pleated sheet, stabilised by hydrogen bonds	Phosphorylation is adding PO3 group, regulates enzyme function
	Tertiary structure: tightly packed 3D structure, noncovalent interactions between side chains	Targeting is when proteins are transp- orted to where they need to go in a cell
	Quaternary structure: complex with 2 or more subunits which can be identical or different	Many proteins have a short signal or locali- sation sequence indicating where they need to go, this is then removed

Protein Biochemistry (cont)

Many proteins contain several different tightly packed domains, each carries out a specific function

DNA Struct	ure		
DNA Structure	Experimental Evidence	Chromosome Structure	DNA- Binding Proteins
DNA is made up of nucleo- tides	Chargaff used paper chromatog- raphy and looked at base proportions. % purine = % pyrimidine	Chromo- somes are long DNA molecules containing genetic information, have regulatory sequences for proper expression and replic- ation	Proteins bind to specific domains which can have a general affinity for DNA, or are sequence specific
Nucleo- tides have: deoxyr- ibose ring, nitrog- enous base, phosphate group	Wilkins and Franklin used X- Ray crystallo- graphy, found DNA is a helix with even structure	Eukaryotic chromo- somes are linear, have a; centro- mere, and telomeres	Transcriptional regulators bind regulatory sequences near promoters to block or stimulate transcription (eg lac operon in E.coli)
Purines (adenine, guanine) have 2 rings, pyrimi- dines (cytosine, thymine, uracil) have 1 ring	Watson and Crick made a model: A-T and G-C hydrogen bonded base pairs, antiparallel strands, right handed double helix, one helical turn every 10.5 base pairs (3.4 nm), major and minor grooves	Bacteria have a smaller single circular chromosome	Restriction endonucleases are enzymes that cut DNA at specific sequences. Bacteria use them to restrict virus action, they can be used in the lab to manipulate DNA

С

By green.tortellini cheatography.com/greentortellini/

Published 21st December, 2023. Last updated 21st December, 2023. Page 1 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

MolBio - Proteins and DNA Cheat Sheet by green.tortellini via cheatography.com/197925/cs/41819/

DNA Structure (cont)

DNA is	Plasmids in prokaryotes	Histones are proteins that
written	can be passed between	DNA wraps around to form
from 5'	cells via conjugation	chromatin. Not sequence
to 3'		specific

2 H bonds between adenine and thymine, 3 H bonds between cytosine and guanine

DNA as Genetic Material

			DNA Replicati
Chromosomal Inheri- tance	Transforming Principle	Hershey-Chase Experiment	Semi- Conser
Sutton & Boveri invest- igated where genetic material is carried using	Griffith worked on S. pneumoniae; S strain are	Bacteriophage T2 inject genetic material inside	vative Replic- ation
cytology, and microscopy	pathogenic (have capsule), R strain is not	E.coli, investigated what this material is	DNA strands are comple- mentary
Sutton used grassh- oppers, Boveri used Ascaris worms (round- worms). Their chromo- somes are large and few	When cell extract of dead S strain is injected to mice- no illness. When combined with live	Labelled bacter- iophage with radioactive isotopes. 32P for DNA, 35S for	
in number, making them easy to observe	R strain and injected- illness	protein to deduce which is genetic material	3 theories for replication: conservative,
Discovered chromo- somes are important in reproduction and develo- pment	Bacteria are being transformed when combined, hereditary material is being passed	Allowed bacter- iophage to inject unlabelled bacteria. Separated phage from bacteria using blender	semi-conserv- ative, dispersive
Discoveries matched those of Mendel's, and provided physical basis for his theories	Tested which molecule carries hereditary material, used enzymes which destroy specific molecules.	Centrifuged. Tested infected bacteria pellet with Geiger counter.	Meselson- Stahl used nitrogen isotopes to tes which theory i correct. Grew E.coli in 15N
			(to make

DNA as Genetic Material (cont)

Suggested different	Discovered DNA is	Bacteriophage
combinations of	responsible for transf-	labelled 32P
chromosomes could	ormation. Gene coding	had made the
cause variation;	for the capsule is	bacteria radioa-
discovered genes, and	passed to R strain from	ctive, indicating
the linear structure of	S strain, making them	DNA is genetic
chromosomes	pathogenic	material

DNA Replication

Semi- Conser-Process of vative Replic-Replication

DNA

strands

separate and are

Enzymes for Replication

nucleotides in a

5' to 3' direction,

needs primer to

Leading and Lagging Strands & Telomeres Polymerase adds Leading

strand is 5' to 3', while the lagging strand

			00 0
	used as templates for new strands	start	is 3' to 5' direction
3 theories for replication: conservative, semi-conserv- ative, dispersive	Replication fork- region where DNA is being copied	Primase generates primer (usually RNA), a small stretch of nucleotides in a 5' to 3' direction. Removed afterwards and the gap is filled in (by polymerase)	Replication in lagging strand leads away from fork and is discontin- uous. Strand is primed many times, so Okazaki fragments form.
Meselson- Stahl used nitrogen isotopes to test which theory is correct. Grew E.coli in 15N (to make heavy DNA) and transf-	Origin of replication- where the hydrogen bonds are broken and the strands are pulled apart so replication	Single stranded binding proteins separate the DNA strands and prevent reanne- aling	Primer removal at the end of Okazaki fragments causes erosion of genetic material, telomeres

By green.tortellini cheatography.com/greentortellini/

Published 21st December, 2023. Last updated 21st December, 2023. Page 2 of 3.

erred to 14N

can start

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

solve this

Cheatography

MolBio - Proteins and DNA Cheat Sheet by green.tortellini via cheatography.com/197925/cs/41819/

DNA Replication (cont)			
Separated heavy and light DNA by ultrac- entrifugation, obtained a liquid gradient.	Humans have multiple origins of replic- ation, E.coli have one	Helicase breaks the hydrogen bonds between bases and unwinds the helix	Telomeres- short stretches of repetitive DNA sequences at the end of chromo- somes, some is lost after replic- ation
Observed using UV light, after 1 generation DNA was hybrid. After 2+ generations it became lighter, proving semi- conservative replic- ation	Replic- ation is bidire- ctional	Ligase joins the stretches of DNA together into a single strand	Telomeres are effective where DNA needs to be passed on perfectly
		Topoisomerase relieves pressure from overwinding around the replication bubble by making and resealing breaks in the DNA	

By green.tortellini

cheatography.com/greentortellini/ Published 21st December, 2023. Last updated 21st December, 2023. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com