\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{gracev (gracev21)} \pdfinfo{ /Title (nervous-tissue.pdf) /Creator (Cheatography) /Author (gracev (gracev21)) /Subject (nervous tissue Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{3C7BA6} \definecolor{LightBackground}{HTML}{F2F6F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{nervous tissue Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{gracev (gracev21)} via \textcolor{DarkBackground}{\uline{cheatography.com/168753/cs/35444/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}gracev (gracev21) \\ \uline{cheatography.com/gracev21} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 14th November, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{function of nervous system}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{detects physical change that can affect the body} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{works with endocrine system to respond to change} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{excitable characteristics of nervous tissue aids these functions} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{generation of nerve impulses - action potentials} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.74655 cm} x{4.23045 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{cells of nervous system}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{neurons} & form processing networks "wiring" within brain and spinal cord, functional unit of the nervous system excitable cells that conduct nerve impulses. bring all regions of the body under the CNS control \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} glia & (protect, nutrients, insulating) smaller and more than neurons. the "glue" that maintains neuronal networks. ability to divide. \tn % Row Count 10 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.9908 cm} x{2.9862 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{regions of neurons}} \tn % Row 0 \SetRowColor{LightBackground} dendrites (receiving end) & conduct nerve signals {\emph{toward}} the cell body \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} cell body (aka soma) & contains organelles (lysosome, mitochondria, nissl bodies) respond to stimuli \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} axon & conducts nerve impulses {\emph{away}} from cell body toward other neuron or effector cell. \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} axon hillock (axon) & axon joins cell body. determines if action potential happens (-55v) \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} synaptic knob/button (axon) & carry info of stimulus as electrical impulse \tn % Row Count 15 (+ 2) % Row 5 \SetRowColor{white} cytoskeleton & \seqsplit{"railway" allowing rapid transport of small } \seqsplit{organelles to/from far ends of neuron.} \seqsplit{Motor molecules shuttle vesicles with NT } \seqsplit{between soma and terminal buttons.} process= axonal transport \tn % Row Count 23 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.14011 cm} x{2.83689 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{receiving and conducting nerve signals}} \tn % Row 0 \SetRowColor{LightBackground} input zone & dendrites, cell body \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} summation zone & axon hillock \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} conduction zone & axon \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} output zone & axon terminal, knobs \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.64701 cm} x{4.32999 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{neuronal regeneration}} \tn % Row 0 \SetRowColor{LightBackground} in CNS & little to no regeneration possible \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} in PNS & repair possible if cell body not damaged and if shwann cells still capable of producing myelin \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.34379 cm} x{3.63321 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{types of channels}} \tn % Row 0 \SetRowColor{LightBackground} leak channels & randomly open and close, there are more K+ leak channels than Na+. found in dendrites and cell bodies \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} ligand (gated) & open and close in response to binding with a ligand (specific chemical). found in dendrites and cell bodies. \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} voltage (gated) & opens in response to changes in membrane potential (voltage) charge in mVolts. found in initial segment of axon, a long axon and axon terminals \tn % Row Count 13 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.34379 cm} x{3.63321 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Repolarization channels 2 states}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{movement of K+ is responsible for repolarization} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{voltage-gated potassium channels have 2 states} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} resting state & channels closed; no K+ movement \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} activated state & channels open; K+ flows doen concentration gradients \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.74195 cm} x{3.23505 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{local potential}} \tn % Row 0 \SetRowColor{LightBackground} excitation of a neuron & when a stimulus triggers opening of NA+ ligand-gated channels. Excess positive ions outside the plasma membrane decreases, the membrane potential becomes more positive (moves toward zero) \{\{fa-arrow\}\}depolarization \tn % Row Count 9 (+ 9) % Row 1 \SetRowColor{white} inhibition of a neuron & when a stimulus triggers opening of K+ ligand-gated channels as K+ diffuses out of cell, excess of positive ions outside plasma membrane increases membrane potential \{\{fa-arrow\}\} hyperpolarization \tn % Row Count 17 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.8308 cm} x{2.2885 cm} p{0.4577 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{propagation of AP conduction speed}} \tn % Row 0 \SetRowColor{LightBackground} axons with larger diameter have faster conduction speeds & myelinated axons get signal to axon terminal faster & \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} saltatory conduction & myelin sheath increases efficiency and speed of signal conduction; AP only depolarize nodes of Ranvier and "jump over" internodes & \tn % Row Count 11 (+ 7) % Row 2 \SetRowColor{LightBackground} continuous conduction & every section of unmyelinated membrane from trigger zone to axon terminal must propagate AP; slow conduction speed & \tn % Row Count 17 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{local anesthetic drugs}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{cause temporary numbness to a specific region of the body} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{block voltage gated Na+ channels of neurons in treated area; prohibits depolarization} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{causes APs relaying pain to not be transmitted to CNS} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{cause temporary paralysis} \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{neurotransmitters (NT) classifications}} \tn % Row 0 \SetRowColor{LightBackground} function (post synaptic receptor) & 2 main classifications: excitatory or EPSPs and inhibitory IPSPs; or whether receptor directly opens a channel, ionotropic or indirectly, metabotropic. \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} structure (mechanisms, NTs cause a change) & 2 main classes: small and large- molecules transmitters; because the functions of specific NTs vary by location thayre usually classified by chemical structure. \tn % Row Count 16 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{3 fundamental steps}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. sensory function detects internal and external stimuli} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. interpretation is made (analysis)} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. motor response occurs (reaction)} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.14011 cm} x{2.83689 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{type of effector regulated}} \tn % Row 0 \SetRowColor{LightBackground} somatic nervous system (SNS) & info to the somatic effectors, skeletal muscles \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} autonomic nervous system (ANS) & info to autonomic or visceral effectors, smooth muscle, glands, adipose tissue, other involuntary tissue. \tn % Row Count 8 (+ 5) % Row 2 \SetRowColor{LightBackground} enteric nervous system (ENS) & info to digestive system effectors \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.89126 cm} x{3.08574 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{efferent pathways of ANS}} \tn % Row 0 \SetRowColor{LightBackground} sympathetic division & pathways exiting the middle of the spinal cord, trigger fight or flight response \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \seqsplit{parasympathetic} division & pathways exiting brain or lower portions of the spinal cord, triggers rest and repair response. \tn % Row Count 8 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{nervous system division}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/gracev21_1668354509_c12f001.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{functional classification}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Sensory or afferent neurons} & conveys impulse {\emph{into}} CNS through cranial or spinal nerves \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \seqsplit{Motor or efferent neurons} & convey impulses {\emph{away}} from CNS to effectors \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \seqsplit{Interneurons/Association neurons} & located between sensory and motor neurons and process sensory info. elicit motor response \tn % Row Count 10 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.74195 cm} x{3.23505 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{white vs gray matter}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{white matter}} & {\bf{ gray matter}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & composed of cell bodies and unmyelinated fibres \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} CNS: myelinated tracts & CNS: referred to as nuclei (not nucleus) \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} PNS: myelinated nerves & PNS: referred to as ganglia \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.4931 cm} x{3.4839 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{changes resting potential (RMP)}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{depolarization} & Na+ channels open. \seqsplit{Allows positively charged Na+} to flow into cell Membrane potential becomes {\bf{more positive}} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \seqsplit{repolarization} & K+ channels open. \seqsplit{Allows positively charged K+} to flow out of cell. Cell becomes {\bf{more negative}}, returning to RMP \tn % Row Count 10 (+ 5) % Row 2 \SetRowColor{LightBackground} \seqsplit{hyperpolarization} & – \seqsplit{cell becomes more negative than its } normal RMP due to loss of K+ \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.84149 cm} x{3.13551 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{3 general phases AP}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{depolarization} phase & \seqsplit{membrane potential rises toward zero}, then becomes positive briefly \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \seqsplit{repolarization} phase & \seqsplit{membrane potential returns to a } negative value \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \seqsplit{hyperpolarization} phase & \seqsplit{membrane potential temporarily } becomes more negative \seqsplit{than resting membrane potential} \tn % Row Count 9 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{mechanisms that produce AP}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. \seqsplit{Stimulus applied to neuron}, triggers ligand-gated Na+ channels to open; Na+ \seqsplit{diffuses rapidly into cell = local depolarization}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. \seqsplit{If magnitude of local depolarization surpasses a limit} threshold potential (-55v) voltage-gated Na+ channels activated} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. More Na+ \seqsplit{enters cell = further depolarization}} \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{4. \seqsplit{Action potential is an ALL-OR-NONE} response} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{5. Voltage-gated Na+ channels stay open for \textasciitilde{}1 ms} \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{6. More Na+ rushes into cell, membrane rapidly moves toward 0mV} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{7. continues in a positive direction to peak around +30v; an excess of positive ions inside the membrane} \tn % Row Count 14 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{8. after action potential peaks, membrane potential begins to move back toward the resting membrane potential.} \tn % Row Count 17 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{9. Na+ stop flowing into axon, K+ begins exiting axon as repolarization begins} \tn % Row Count 19 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{10. as neuron's plasma membrane returns to RMP, there is a brief period of hyperpolarization; membrane potential more negative than RMP before K+ channels return to resting state} \tn % Row Count 23 (+ 4) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{11. Na+ channels return to resting state} \tn % Row Count 24 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{12. RMP is restored by Na+- K+ pumps} \tn % Row Count 25 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.54287 cm} x{3.43413 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{summation}} \tn % Row 0 \SetRowColor{LightBackground} summation & where all input from several postsynaptic potentials are added together ( excitatory postsynaptic potential and inhibitory postsynaptic potential) to affect membrane potential at trigger zone \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{2 types} \tn % Row Count 9 (+ 1) % Row 2 \SetRowColor{LightBackground} temporal summation & NT releases repeatedly from axon terminal of a single presynaptic neuron \tn % Row Count 12 (+ 3) % Row 3 \SetRowColor{white} spatial summation & involves simultaneous release of NT's from axon terminals of many presynaptic neuron. \tn % Row Count 16 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{synaptic transmission sequence of events}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1 AP reaches synaptic knob, causes Calcium Voltage gated channels to ope Ca \textasciicircum{}2+\textasciicircum{} diffuses into knob} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2 increase Ca\textasciicircum{}2+\textasciicircum{} triggers release of NT by exocytosis} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3 neurotransmitters diffuse across synaptic cleft and bind to receptors, causing ion channels to open} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{4 opening of ion channels produces a local potential possibly an action potential is threshold is reached} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{5 the NT's action is quickly terminated} \tn % Row Count 11 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.24425 cm} x{3.73275 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{large molecule NTs}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{neuropeptides} & act as neuromodulator: released with other NTs and modifies their effects \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} example & Endorphins, substance P \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{peripheral nervous system}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{nervous tissue in outer regions of the body} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{cranial nerves- originate in brain communicate with peripheral nerve} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{spinal nerves - originate in spinal cord} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{central nervous system}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{structural and functional centre} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{brain and spinal cord} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{brings in incoming sensory info then evaluates info, creates outgoing response} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.4931 cm} x{3.4839 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{pathways divisions}} \tn % Row 0 \SetRowColor{LightBackground} afferent division & carry toward, all incomoing sensory and afferent pathways. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} efferent & carry away, all outgoing motor or efferent pathways \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{afferent vs efferent}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/gracev21_1668353445_1200px-Afferent_and_efferent_neurons_en.svg.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.84149 cm} x{3.13551 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Glia}} \tn % Row 0 \SetRowColor{LightBackground} astrocyte (CNS) & (tight junctions =blood-brain barrier) Connect neurons and capillaries of the brain. transfers nutrients \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} microglia (CNS) & (macrophages) In inflamed brain tissue, they enlarge, move and carry on phagocytosis \tn % Row Count 9 (+ 4) % Row 2 \SetRowColor{LightBackground} Ependymal cells (CNS) & \seqsplit{Produce or aid in circulation of fluid} (help make CSF) \tn % Row Count 12 (+ 3) % Row 3 \SetRowColor{white} oligo dendrocytes (CNS) & \seqsplit{Hold nerve fibers together and produce myelin } sheath (wraps itself around neuron) \tn % Row Count 16 (+ 4) % Row 4 \SetRowColor{LightBackground} shwann cells (PNS) & \seqsplit{Hold nerve fibers together and produce myelin } sheath (wraps itself around neuron) \tn % Row Count 20 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.9908 cm} x{2.9862 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{nerves and tracts}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{NERVES}} layers of nerves & bundles of peripheral neurons held together by layers of C.T \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} epineurium & surrounds complete nerve (superficial) \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} perineurium & surrounds bundles of nerve fibres (fascicles) \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} endoneurium & surrounds each neuron (deep) \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} in CNS & bundles of neurons are called tracts or fasciculi not nerves \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{{\bf{remember}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{(-) inside cells k+, (+) outside cells Na+} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.4931 cm} x{3.4839 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{2 types of electrical signals}} \tn % Row 0 \SetRowColor{LightBackground} local potentials & {\emph{short}} distance, shift away from RMP in a specific region of the plasma membrane. (strength of potential decreases with distance) \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} action potentials & {\emph{long}} distance (axon length), only travel from axon hillock to axon terminal only generated in trigger zone (axon hillock, initial segment of axon) \tn % Row Count 11 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.54287 cm} x{3.43413 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{depolarization channels 3 states AP}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Na+ movement is responsible for depolarization} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{voltage gated Na+ channels have an activation gate and inactivation gate with 3 states} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} resting state & inactivation gate open and activation gate closed; no Na+ movement \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} activated state & activation and inactivation gates open when an action potential is initiated; due to voltage change \tn % Row Count 10 (+ 4) % Row 4 \SetRowColor{LightBackground} \seqsplit{inactivation} state & inactivation gate closed and activation gate open; no Na+ movement; once action potential is over channel returns to resting state \tn % Row Count 15 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{refractory period}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{period after AP when a neurons cannot be stimulated to generate another AP} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{propagation of AP sequence}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{1 the plasma membrane depolarizes to threshold at trigger zone due to local potential} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{2 as Na+ channels activate, an AP is triggered and spreads down the axon} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{3 the next section of plasma membrane depolarizes to threshold and fires an AP as the previous section of plasma membrane repolarizes} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{4 the current continues to move down the axon, and the process repeats} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.74195 cm} x{3.23505 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{neuronal synapses}} \tn % Row 0 \SetRowColor{LightBackground} synapses & where signals are transmitted one neuron (sender presynaptic) to another neuron/muscle (receiver- postsynaptic) \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{two kinds} \tn % Row Count 6 (+ 1) % Row 2 \SetRowColor{LightBackground} 1 electrical synapses & cells joined end to end (gap junctions); cardiac muscles cells, smooth muscle cells, parts of brain \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} 2 chemical synapses & presynaptic cells release chemical transmitters across a tiny gap to postsynaptic cell, possibly including an AP there \tn % Row Count 15 (+ 5) % Row 4 \SetRowColor{LightBackground} synaptic knob & tiny bulge at end of a terminal branch of presynaptic neuron's axon that contains vesicles housing NTs \tn % Row Count 19 (+ 4) % Row 5 \SetRowColor{white} synaptic cleft & \seqsplit{space between a synaptic knob and the } \seqsplit{plasma membrane of a postsynaptic neuron} \tn % Row Count 23 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{PLasma membrane of presynaptic neuron has protein molecules that work as receptors fpr neurotransmitters (NTs)} \tn % Row Count 26 (+ 3) % Row 7 \SetRowColor{white} Ionotropic receptors & direct; ion channels \tn % Row Count 28 (+ 2) % Row 8 \SetRowColor{LightBackground} Metabotropic receptors & indirect; proteins that bind NT and signals ion flow elsewhere. \tn % Row Count 31 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.23965 cm} x{2.73735 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{small molecule NTs}} \tn % Row 0 \SetRowColor{LightBackground} acetylcholine & \seqsplit{Excitatory and Inhibitory roles;} deactivated by acetylcholinesterase \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} amines & \seqsplit{Monoamines and catecholamines ;} ex dopamine, epinephrine, norepinephrine \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} amino acids & \seqsplit{Common neurotransmitters in CNS;} ex Glutamate, Glycine, Aspartate, Gabba aminobutyric acid \tn % Row Count 13 (+ 5) % Row 3 \SetRowColor{white} other small molecule transmitters & Nitric Oxide, Carbon monoxide \tn % Row Count 15 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}