nervous tissue Cheat Sheet by gracev (gracev21) via cheatography.com/168753/cs/35444/

function of nervous system

detects physical change that can affect the body

works with endocrine system to respond to change

excitable characteristics of nervous tissue aids these functions

generation of nerve impulses - action potentials

cells of nervous system

neurons	form processing networks "wir- ing" within brain and spinal cord, functional unit of the nervous system excitable cells that conduct nerve impulses. bring all regions of the body under the CNS control
glia	(protect, nutrients, insulating) smaller and more than neurons. the "glue" that maintains neuronal networks. ability to divide.

_		
	regions of n	eurons
	dendrites (receiving end)	conduct nerve signals <i>toward</i> the cell body
	cell body (aka soma)	contains organelles (lysosome, mitochondria, nissl bodies) respond to stimuli
	axon	conducts nerve impulses <i>away</i> from cell body toward other neuron or effector cell.
	axon hillock (axon)	axon joins cell body. determines if action potential happens (-55v)
	synaptic knob/b- utton (axon)	carry info of stimulus as electrical impulse

regions of neurons (cont)

"railway" allowing rapid transport
of small organelles to/from far
ends of neuron. Motor molecules
shuttle vesicles with NT between
soma and terminal buttons.
process= axonal transport

receiving and conducting nerve signals		
input zone	dendrites, cell body	
summation zone	axon hillock	
conduction zone	axon	
output zone	axon terminal, knobs	

neuronal regeneration

in	little to no regeneration possible
CNS	
in	repair possible if cell body not

	ropan poooloio n oon body not
PNS	damaged and if shwann cells still
	capable of producing myelin

types of channels		
leak channels	randomly open and close, there are more K+ leak channels than Na+. found in dendrites and cell bodies	
ligand (gated)	open and close in response to binding with a ligand (specific chemical). found in dendrites and cell bodies.	
voltage (gated)	opens in response to changes in membrane potential (voltage) charge in mVolts. found in initial segment of axon, a long axon and axon terminals	

Repolarization channels 2 states

movement of K+ is responsible for repola- rization	
voltage-gated potassium channels have 2 states	
resting state	channels closed; no K+ movement
activated state	channels open; K+ flows doen concentration gradients

local potential		
excitation	when a stimulus triggers	
of a	opening of NA+ ligand-gated	
neuron	channels. Excess positive ions	
	outside the plasma membrane	
	decreases, the membrane	
	potential becomes more	
	positive (moves toward zero)	
	depolarization	
inhibition	when a stimulus triggers	
of a	opening of K+ ligand-gated	
neuron	channels as K+ diffuses out of	
	cell, excess of positive ions	
	outside plasma membrane	
	increases membrane potential	
	hyperpolarization	

propagation of AP conduction speed

axons with	myelinated axons get signal
larger	to axon terminal faster
diameter	
have faster	
conduction	
speeds	
saltatory	myelin sheath increases
conduction	efficiency and speed of signal
	conduction; AP only
	depolarize nodes of Ranvier
	and "jump over" internodes

By gracev (gracev21) cheatography.com/gracev21/ Not published yet. Last updated 14th November, 2022. Page 1 of 5.

nervous tissue Cheat Sheet by gracev (gracev21) via cheatography.com/168753/cs/35444/

propagatio	n of AP conduction speed (cont)	
continuous	every section of unmyelinated	
conduction	n membrane from trigger zone	
	to axon terminal must	
	propagate AP; slow	
	conduction speed	
local anest	thetic drugs	
cause temporary numbness to a specific region of the body		
block voltage gated Na+ channels of		
neurons in	treated area; prohibits depolariz-	
ation		
causes APs relaying pain to not be transm-		
itted to CNS		
cause temporary paralysis		
	······································	
neurotrans	smitters (NT) classifications	
function	2 main classifications: excitatory	
(post	or EPSPs and inhibitory IPSPs;	
synaptic	or whether receptor directly	
receptor)	opens a channel, ionotropic or	
	indirectly, metabotropic.	
structure	2 main classes: small and large-	
(mecha-	molecules transmitters;	
nisms,	because the functions of	

specific NTs vary by location

thayre usually classified by

chemical structure.

NTs

cause a

change)

3 fundamental steps

1. sensory function detects internal and external stimuli

2. interpretation is made (analysis)

3. motor response occurs (reaction)

type of effect	tor regulated
somatic nervous system (SNS)	info to the somatic effectors, skeletal muscles
autonomic nervous system (ANS)	info to autonomic or visceral effectors, smooth muscle, glands, adipose tissue, other involuntary tissue.
enteric nervous system (ENS)	info to digestive system effectors

efferent pathways of ANS

sympat	pathways exiting the middle of
netic	the spinal cord, trigger fight or
division	flight response
oarasy- mpa- hetic division	pathways exiting brain or lower portions of the spinal cord, triggers rest and repair response.

nervous system division

functional classification

Sensory or afferent neurons	conveys impulse <i>into</i> CNS through cranial or spinal nerves
Motor or efferent neurons	convey impulses <i>away</i> from CNS to effectors
Interneur- ons/As- sociation neurons	located between sensory and motor neurons and process sensory info. elicit motor response

white vs gray matter	
white matter	gray matter
	composed of cell bodies and unmyelinated fibres
CNS: myelinated tracts	CNS: referred to as nuclei (not nucleus)
PNS: myelinated nerves	PNS: referred to as ganglia

changes resting potential (RMP)

depola riz- ation	Na+ channels open. Allows positively charged Na+ to flow into cell Membrane potential becomes more positive
repola riz- ation	K+ channels open. Allows positively charged K+ to flow out of cell. Cell becomes more negative , returning to RMP
hyperp olariz- ation	 cell becomes more negative than its normal RMP due to loss of K+

By gracev (gracev21) cheatography.com/gracev21/ Not published yet. Last updated 14th November, 2022. Page 2 of 5.

nervous tissue Cheat Sheet by gracev (gracev21) via cheatography.com/168753/cs/35444/

3 general phases AP

depola- rization phase	membrane potential rises toward zero, then becomes positive briefly
repola- rization phase	membrane potential returns to a negative value
hyperp olariz- ation phase	membrane potential temporarily becomes more negative than resting membrane potential

mechanisms that produce AP

1. Stimulus applied to neuron, triggers ligand-gated Na+ channels to open; Na+ diffuses rapidly into cell = local depolarization

2. If magnitude of local depolarization surpasses a limit threshold potential (-55v) voltage-gated Na+ channels activated

3. More Na+ enters cell = further depolarization

4. Action potential is an ALL-OR-NONE response

5. Voltage-gated Na+ channels stay open for ~1 ms

6. More Na+ rushes into cell, membrane rapidly moves toward 0mV

 continues in a positive direction to peak around +30v; an excess of positive ions inside the membrane

8. after action potential peaks, membrane potential begins to move back toward the resting membrane potential.

9. Na+ stop flowing into axon, K+ begins exiting axon as repolarization begins

10. as neuron's plasma membrane returns to RMP, there is a brief period of hyperpolarization; membrane potential more negative than RMP before K+ channels return to resting state

11. Na+ channels return to resting state

12. RMP is restored by Na+- K+ pumps

By gracev (gracev21) cheatography.com/gracev21/

summation

summation	where all input from several postsynaptic potentials are added together (excitatory postsynaptic potential and inhibitory postsynaptic potential) to affect membrane potential at trigger zone
2 types	
temporal summation	NT releases repeatedly from axon terminal of a single presynaptic neuron
spatial summation	involves simultaneous release of NT's from axon terminals of many presynaptic neuron.

synaptic transmission sequence of events

1 AP reaches synaptic knob, causes Calcium Voltage gated channels to ope Ca ²⁺ diffuses into knob

2 increase Ca²⁺ triggers release of NT by exocytosis

3 neurotransmitters diffuse across synaptic cleft and bind to receptors, causing ion channels to open

4 opening of ion channels produces a local potential possibly an action potential is threshold is reached

5 the NT's action is quickly terminated

large molecule NTs		
neurop-	act as neuromodulator: released	
eptides	with other NTs and modifies	
	their effects	
example	Endorphins, substance P	

peripheral nervous system

nervous tissue in outer regions of the body cranial nerves- originate in brain communicate with peripheral nerve

spinal nerves - originate in spinal cord

central nervous system

structural and functional centre

brain and spinal cord

brings in incoming sensory info then evaluates info, creates outgoing response

pathways divisions

afferent	carry toward, all incomoing
division	sensory and afferent pathways.
efferent	carry away, all outgoing motor or
	efferent pathways

afferent vs efferent

Glia	
astrocyte (CNS)	(tight junctions =blood-brain barrier) Connect neurons and capillaries of the brain. transfers nutrients
microglia (CNS)	(macrophages) In inflamed brain tissue, they enlarge, move and carry on phagoc- ytosis
Ependymal cells (CNS)	Produce or aid in circulation of fluid (help make CSF)

Not published yet. Last updated 14th November, 2022. Page 3 of 5.

nervous tissue Cheat Sheet by gracev (gracev21) via cheatography.com/168753/cs/35444/

Glia (cont)

oligo	Hold nerve fibers together and
dendro-	produce myelin sheath (wraps
cytes	itself around neuron)
(CNS)	
shwann	Hold nerve fibers together and
cells	produce myelin sheath (wraps
(PNS)	itself around neuron)

nerves and tracts

NERVES layers of nerves	bundles of peripheral neurons held together by layers of C.T
epineurium	surrounds complete nerve (superficial)
perine- urium	surrounds bundles of nerve fibres (fascicles)
endone- urium	surrounds each neuron (deep)
in CNS	bundles of neurons are called tracts or fasciculi not nerves

remember

(-) inside cells k+, (+) outside cells Na+

2 types of e	lectrical signals
local	short distance, shift away from
potentials	RMP in a specific region of the
	plasma membrane. (strength of
	potential decreases with
	distance)
action	long distance (axon length),
potentials	only travel from axon hillock to
	axon terminal only generated in
	trigger zone (axon hillock, initial
	segment of axon)

depolarization channels 3 states AP

Na+ movement is responsible for depolarization

voltage gated Na+ channels have an		
activation gate and inactivation gate with 3		
states		
resting state	inactivation gate open and activation gate closed; no Na+ movement	
activated state	activation and inactivation gates open when an action potential is initiated; due to voltage change	
inacti- vation state	inactivation gate closed and activation gate open; no Na+ movement; once action potential is over channel returns to resting state	

refractory period

period after AP when a neurons cannot be stimulated to generate another AP

propagation of AP sequence

1 the plasma membrane depolarizes to threshold at trigger zone due to local potential

2 as Na+ channels activate, an AP is triggered and spreads down the axon

3 the next section of plasma membrane depolarizes to threshold and fires an AP as the previous section of plasma membrane repolarizes

4 the current continues to move down the axon, and the process repeats

neuronal synapses

synapses	where signals are transmitted
	one neuron (sender presyn-
	aptic) to another
	neuron/muscle (receiver-
	postsynaptic)

two kinds

By gracev (gracev21) cheatography.com/gracev21/ Not published yet. Last updated 14th November, 2022. Page 4 of 5.

neuronal synapses (cont)

1 electrical synapses	cells joined end to end (gap junctions); cardiac muscles cells, smooth muscle cells, parts of brain	
2 chemical synapses	presynaptic cells release chemical transmitters across a tiny gap to postsynaptic cell, possibly including an AP there	
synaptic knob	tiny bulge at end of a terminal branch of presynaptic neuron's axon that contains vesicles housing NTs	
synaptic cleft	space between a synaptic knob and the plasma membrane of a postsynaptic neuron	
PLasma membrane of presynaptic neuron has protein molecules that work as receptors fpr neurotransmitters (NTs)		
lonotropic receptors	direct; ion channels	
Metabo- tropic receptors	indirect; proteins that bind NT and signals ion flow elsewhere.	
small molecule NTs		
acetyl- E choline d	eactivated by acetylcholinest-	

amines Monoamines and catecholamines ; ex dopamine, epinephrine, norepinephrine

nervous tissue Cheat Sheet by gracev (gracev21) via cheatography.com/168753/cs/35444/

small molecule NTs (cont)		
amino acids	Common neurotransmitters in CNS; ex Glutamate, Glycine,	
	Aspartate, Gabba aminobutyric acid	
other small	Nitric Oxide, Carbon monoxide	
molecule		
transm-		
itters		

By gracev (gracev21)

cheatography.com/gracev21/

Not published yet. Last updated 14th November, 2022. Page 5 of 5.