

by gracev (gracev21) via cheatography.com/168753/cs/35444/

function of nervous system

detects physical change that can affect the body

works with endocrine system to respond to change

excitable characteristics of nervous tissue aids these functions

generation of nerve impulses - action potentials

cells of nervous system

neurons	form processing networks "wiring" within brain and spinal cord, functional unit of the nervous system excitable cells that conduct nerve impulses. bring all regions of the body under the CNS control
glia	(protect, nutrients, insulating) smaller and more than neurons. the "glue" that maintains neuronal networks. ability to

regions of neurons

divide.

rogionio or r	rogiono or nourono		
dendrites (receiving end)	conduct nerve signals <i>toward</i> the cell body		
cell body (aka soma)	contains organelles (lysosome, mitochondria, nissl bodies) respond to stimuli		
axon	conducts nerve impulses <i>away</i> from cell body toward other neuron or effector cell.		
axon hillock (axon)	axon joins cell body. determines if action potential happens (-55v)		
synaptic knob/b- utton (axon)	carry info of stimulus as electrical impulse		

regions of neurons (cont)

cytos "railway" allowing rapid transport
k- of small organelles to/from far
eleton ends of neuron. Motor molecules
shuttle vesicles with NT between
soma and terminal buttons.
process= axonal transport

receiving and conducting nerve signals

input zone	dendrites, cell body
summation zone	axon hillock
conduction zone	axon
output zone	axon terminal, knobs

neuronal regeneration

ın	little to no regeneration possible
CNS	
in	repair possible if cell body not
PNS	damaged and if shwann cells still
	capable of producing myelin

types of channels

leak channels	randomly open and close, there are more K+ leak channels than Na+. found in dendrites and cell bodies
ligand (gated)	open and close in response to binding with a ligand (specific chemical). found in dendrites and cell bodies.
voltage (gated)	opens in response to changes in membrane potential (voltage) charge in mVolts. found in initial segment of axon, a long axon and axon terminals

Repolarization channels 2 states

movement of K+ is responsible for repolarization

voltage-gated potassium channels have 2 states

resting channels closed; no K+ state movement

activated channels open; K+ flows doen state concentration gradients

local potential

excitation	when a stimulus triggers
of a	opening of NA+ ligand-gated
neuron	channels. Excess positive ions
	outside the plasma membrane
	decreases, the membrane
	potential becomes more
	positive (moves toward zero)
	depolarization
inhibition	when a stimulus triggers

inhibition when a stimulus triggers
of a opening of K+ ligand-gated
neuron channels as K+ diffuses out of
cell, excess of positive ions
outside plasma membrane
increases membrane potential

hyperpolarization

myelinated axons get signal

propagation of AP conduction speed

axons with

	, ,
larger	to axon terminal faster
diameter	
have faster	
conduction	
speeds	
saltatory	myelin sheath increases
conduction	efficiency and speed of signal
	conduction; AP only
	depolarize nodes of Ranvier
	and "jump over" internodes

By **gracev** (gracev21) cheatography.com/gracev21/

Not published yet. Last updated 14th November, 2022. Page 1 of 5.

by gracev (gracev21) via cheatography.com/168753/cs/35444/

propagation of AP conduction speed (cont)

continuous every section of unmyelinated conduction membrane from trigger zone to axon terminal must propagate AP: slow

propagate AP; slow conduction speed

local anesthetic drugs

cause temporary numbness to a specific region of the body

block voltage gated Na+ channels of neurons in treated area; prohibits depolarization

causes APs relaying pain to not be transmitted to CNS

cause temporary paralysis

neurotransmitters (NT) classifications

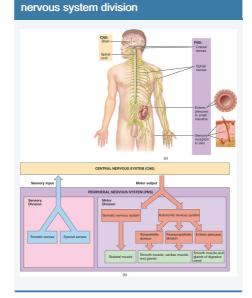
function	2 main classifications: excitatory
(post	or EPSPs and inhibitory IPSPs;
synaptic	or whether receptor directly
receptor)	opens a channel, ionotropic or
	indirectly, metabotropic.
structure	2 main classes: small and large-
(mecha-	molecules transmitters;
nisms,	because the functions of
NTs	specific NTs vary by location
cause a	thayre usually classified by
change)	chemical structure.

3 fundamental steps

- 1. sensory function detects internal and external stimuli
- 2. interpretation is made (analysis)
- 3. motor response occurs (reaction)

type of effector regulated

somatic info to the somatic effectors, nervous skeletal muscles system (SNS)


autonomic info to autonomic or visceral nervous effectors, smooth muscle, system glands, adipose tissue, other involuntary tissue.

enteric info to digestive system nervous effectors

efferent pathways of ANS

system (ENS)

sympat pathways exiting the middle of hetic the spinal cord, trigger fight or division flight response parasy-pathways exiting brain or lower portions of the spinal cord, thetic triggers rest and repair response.

functional classification

Sensory	conveys impulse into CNS
or	through cranial or spinal
afferent	nerves
neurons	
Motor or efferent neurons	convey impulses <i>away</i> from CNS to effectors
Interneur-	located between sensory and motor neurons and process
sociation	sensory info. elicit motor
neurons	response

white vs gray matter

white matter	gray matter
	composed of cell bodies and unmyelinated fibres
CNS: myelinated tracts	CNS: referred to as nuclei (not nucleus)
PNS: myelinated nerves	PNS: referred to as ganglia

changes resting potential (RMP)

depola	Na+ channels open. Allows
riz-	positively charged Na+ to flow
ation	into cell Membrane potential
	becomes more positive
repola	K+ channels open. Allows
riz-	positively charged K+ to flow out
ation	of cell. Cell becomes more
	negative, returning to RMP
hyperp	- cell becomes more negative
olariz-	than its normal RMP due to loss
ation	of K+

By **gracev** (gracev21) cheatography.com/gracev21/

Not published yet. Last updated 14th November, 2022. Page 2 of 5.

by gracev (gracev21) via cheatography.com/168753/cs/35444/

3 general phases AP

depola- rization phase	membrane potential rises toward zero, then becomes positive briefly
repola- rization phase	membrane potential returns to a negative value
hyperp olariz- ation phase	membrane potential temporarily becomes more negative than resting membrane potential

mechanisms that produce AP

- 1. Stimulus applied to neuron, triggers ligand-gated Na+ channels to open; Na+ diffuses rapidly into cell = local depolarization
- 2. If magnitude of local depolarization surpasses a limit threshold potential (-55v) voltage-gated Na+ channels activated
- 3. More Na+ enters cell = further depolarization
- 4. Action potential is an ALL-OR-NONE response
- 5. Voltage-gated Na+ channels stay open for ~1 ms
- 6. More Na+ rushes into cell, membrane rapidly moves toward 0mV
- 7. continues in a positive direction to peak around +30v; an excess of positive ions inside the membrane
- 8. after action potential peaks, membrane potential begins to move back toward the resting membrane potential.
- Na+ stop flowing into axon, K+ begins exiting axon as repolarization begins
- 10. as neuron's plasma membrane returns to RMP, there is a brief period of hyperpolarization; membrane potential more negative than RMP before K+ channels return to resting state
- 11. Na+ channels return to resting state
- 12. RMP is restored by Na+- K+ pumps

summation	
summation	where all input from several
	postsynaptic potentials are
	added together (excitatory
	postsynaptic potential and
	inhibitory postsynaptic
	potential) to affect membrane
	potential at trigger zone
2 types	

temporal summation

spatial

summation

NT releases repeatedly from axon terminal of a single presynaptic neuron involves simultaneous

release of NT's from axon

terminals of many presynaptic neuron.

synaptic transmission sequence of events

- 1 AP reaches synaptic knob, causes
 Calcium Voltage gated channels to ope Ca
 ²⁺ diffuses into knob
- 2 increase Ca²⁺ triggers release of NT by exocytosis
- 3 neurotransmitters diffuse across synaptic cleft and bind to receptors, causing ion channels to open
- 4 opening of ion channels produces a local potential possibly an action potential is threshold is reached

5 the NT's action is quickly terminated

large molecule NTs

neurop-	act as neuromodulator: released
eptides	with other NTs and modifies
	their effects

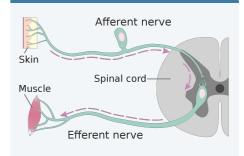
example Endorphins, substance P

peripheral nervous system

nervous tissue in outer regions of the body cranial nerves- originate in brain communicate with peripheral nerve spinal nerves - originate in spinal cord

central nervous system

structural and functional centre


brain and spinal cord

brings in incoming sensory info then evaluates info, creates outgoing response

pathways divisions

afferent	carry toward, all incomoing
division	sensory and afferent pathways.
efferent	carry away, all outgoing motor or
	efferent pathways

afferent vs efferent

Glia

astrocyte (CNS)	(tight junctions =blood-brain barrier) Connect neurons and capillaries of the brain. transfers nutrients
microglia (CNS)	(macrophages) In inflamed brain tissue, they enlarge, move and carry on phagoc- ytosis
Ependymal cells	Produce or aid in circulation of fluid (help make CSF)

By gracev (gracev21) cheatography.com/gracev21/

Not published yet. Last updated 14th November, 2022. Page 3 of 5.

by gracev (gracev21) via cheatography.com/168753/cs/35444/

Glia (cont)

oligo Hold nerve fibers together and dendrocytes itself around neuron)
(CNS)

shwann Hold nerve fibers together and cells produce myelin sheath (wraps (PNS) itself around neuron)

nerves and tracts

NERVES layers of nerves	bundles of peripheral neurons held together by layers of C.T
epineurium	surrounds complete nerve (superficial)
perine- urium	surrounds bundles of nerve fibres (fascicles)
endone- urium	surrounds each neuron (deep)
in CNS	bundles of neurons are called tracts or fasciculi not nerves

remember

(-) inside cells k+, (+) outside cells Na+

2 types of electrical signals

local	short distance, shift away from
potentials	RMP in a specific region of the
	plasma membrane. (strength of
	potential decreases with
	distance)
action	long distance (axon length),
potentials	only travel from axon hillock to
	axon terminal only generated in
	trigger zone (axon hillock, initial
	segment of axon)

depolarization channels 3 states AP

Na+ movement is responsible for depolarization

voltage gated Na+ channels have an activation gate and inactivation gate with 3 states

resting	inactivation gate open and
state	activation gate closed; no Na+
	movement
activated	activation and inactivation gates
state	open when an action potential is
	initiated; due to voltage change
inacti-	inactivation gate closed and
vation	activation gate open; no Na+
state	movement; once action
	potential is over channel returns
	to resting state

refractory period

period after AP when a neurons cannot be stimulated to generate another AP

propagation of AP sequence

1 the plasma membrane depolarizes to threshold at trigger zone due to local potential

2 as Na+ channels activate, an AP is triggered and spreads down the axon

3 the next section of plasma membrane depolarizes to threshold and fires an AP as the previous section of plasma membrane repolarizes

4 the current continues to move down the axon, and the process repeats

neuronal synapses

synapses where signals are transmitted one neuron (sender presynaptic) to another neuron/muscle (receiver-postsynaptic)

two kinds

neuronal synapses (cont)

1 electrical synapses	cells joined end to end (gap junctions); cardiac muscles cells, smooth muscle cells, parts of brain
2 chemical synapses	presynaptic cells release chemical transmitters across a tiny gap to postsynaptic cell, possibly including an AP there
synaptic knob	tiny bulge at end of a terminal branch of presynaptic neuron's axon that contains vesicles housing NTs
synaptic cleft	space between a synaptic knob and the plasma membrane of a postsynaptic neuron

PLasma membrane of presynaptic neuron has protein molecules that work as receptors fpr neurotransmitters (NTs)

Ionotropic direct; ion channels receptors

Metabo- indirect; proteins that bind NT tropic and signals ion flow elsewhere. receptors

small molecule NTs

acetyl-	Excitatory and inhibitory roles;
choline	deactivated by acetylcholinest-
	erase
amines	Monoamines and catecholamines
	; ex dopamine, epinephrine,
	norepinephrine

By gracev (gracev21) cheatography.com/gracev21/

Not published yet. Last updated 14th November, 2022. Page 4 of 5.

by gracev (gracev21) via cheatography.com/168753/cs/35444/

small molecule NTs (cont)

amino acids

Common neurotransmitters in CNS; ex Glutamate, Glycine, Aspartate, Gabba aminobutyric

aci

other

Nitric Oxide, Carbon monoxide

small molecule

transm-

itters

By gracev (gracev21) cheatography.com/gracev21/

Not published yet. Last updated 14th November, 2022. Page 5 of 5.