
C Multiprocessing & Multithreading Cheat Sheet
by Gorge97 via cheatography.com/154085/cs/33088/

Multip​roc​essingMultip​roc​essing

#include <unistd.h>#include <unistd.h>
#include <sy​s/t​ype​s.h>#include <sy​s/t​ype​s.h>

int fork(void)int fork(void)

Fork the current process creating a child.
Return 0 in the child process or child ID
for the parent

int getpid​(void)int getpid​(void)

Return the ID of the calling process

int getppi​d(void)int getppi​d(void)

Return the ID of the parent of the calling
process

void exit(s​tatus)void exit(s​tatus)

Process termin​ation

unlisgned int sleep(​uns​igned int seconds)unlisgned int sleep(​uns​igned int seconds)

Pause the execution of the calling
process for seconds seconds or until a
signal is received

Process Syncro​niz​ationProcess Syncro​niz​ation

#include <sys/types.h>#include <sys/types.h>
#include <sy​s/w​ait.h>#include <sy​s/w​ait.h>

pid_t wait(*​‐pid_t wait(*​‐
status)status)

Wait until a child process
terminate the execution;
On success return the pid
of the child, on failure
return -1;
status is the address of
the variable cointa​ining
the exit status

pid_t waitpi​‐pid_t waitpi​‐
d(pid_t pid, intd(pid_t pid, int
*status, int*status, int
options)options)

Wait until the child
specified with the pid
argument terminate the
execution;
status is the exit status of
the termin​ating process;

Shared MemoryShared Memory

#include <sy​s/s​hm.h​>#include <sy​s/s​hm.h​>

intint
shmget​shmget​
(key_t(key_t
key, intkey, int
size,size,
intint
shmflg)shmflg)

Create a shared memory or
connec to to an existing segment;
key is a numeric key assigned to
the segment. If IPC_PR​IVATE is
used the segment can be only
used by parent and children;
size is the size of the memory
segment; shmflg is a flag field:
IPC_CREATE create a new
segment, IPC_EXCL cause the
command to fail if the segment
already exist.
Return the shared memory
segment id or -1 if fail.

Shared Memory (cont)Shared Memory (cont)

voidvoid
shmat(intshmat(int
shmid,shmid,
const voidconst void
shmaddr,shmaddr,
int shmflg)int shmflg)

Attach to the shared memory
segment and return the
address.
shmid is the shared memory
segment id;
shmadr is the variable where
the address of the segment is
stored;
shmflg is used to specify the
access permis​sions for the
shared memory segment and
to request special attachment
condit​ions, such as a read-
only segment.

intint
shmdt(​‐shmdt(​‐
const voidconst void
*shmaddr)*shmaddr)

Detaches the shared memory
segment located at the
address specified by shmaddr
from the address space of the
calling process.

intint
shmctl(intshmctl(int
shmid, intshmid, int
cmd,cmd,
structstruct
shmid_dsshmid_ds
*buf)*buf)

Performs the control operation
specified by cmd on the
shared memory segment
whose identifier is given in
shmid. Typical usage: shmctl​‐
(shmid, IPC_RMID, 0);
Remove shared memory
segment

By Gorge97Gorge97
cheatography.com/gorge97/

Not published yet.
Last updated 10th July, 2022.
Page 1 of 3.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/gorge97/
http://www.cheatography.com/gorge97/cheat-sheets/c-multiprocessing-and-multithreading
http://www.cheatography.com/gorge97/
http://crosswordcheats.com

C Multiprocessing & Multithreading Cheat Sheet
by Gorge97 via cheatography.com/154085/cs/33088/

Message QueueMessage Queue

#include <sy​s/m​sg.h​>#include <sy​s/m​sg.h​>

int msgget​(key_tint msgget​(key_t
key, int flag)key, int flag)

Creates a message
queue.
key is an integer that
specifies the queue
key;
flag indicates creation
conditions and access
permis​sions (same as
shmget).
Return a message
queue identifier or -1
in case of failure.

int msgsnd(intint msgsnd(int
msqid, const voidmsqid, const void
*msgp, size_t*msgp, size_t
nbytes, int flag);nbytes, int flag);

Send a message on
the queue.
msqid is the identifier
returned by msgget
command;
msgp is the pointer to
the message struct.

Struct msgbuf {
 long mtype;
 char mtext [TEXT
LENGHT];
};
nbytes is the maximum
lenght of the message;

Message Queue (cont)Message Queue (cont)

int msgrcv(intint msgrcv(int
msqid, voidmsqid, void
*msgp, size_t*msgp, size_t
msgsz, longmsgsz, long
msgtype, intmsgtype, int
msgflg)msgflg)

Receive a message from
the queue.
msqid corres​ponds to the
message queue identifier;
msgp is the pointer to a
message struct (the same
used in msgsnd) ;
msgsz is the number of
bytes to read;
msgtype is used to
filterthe message in the
queue. If != 0 read only a
message with the same id
on the queue;
msgflg is a flag that
modify the behavior of the
command. Using
IPC_NOWAIT return
immedi​ately of no
message is found.
The function return the
number of bytes read or -
1 if unsucc​essful

int msgctl(intint msgctl(int
msqid, intmsqid, int
cmd, structcmd, struct
msqid_ds *buf)msqid_ds *buf)

Modifies the properties of
the queue or delete it.
msqid corres​ponds to the
message queue identifier.

Typical usage:
msgctl​(msgid, IPC_RMID,
0);
Removes queue

Unnamed PipesUnnamed Pipes

#include <un​ist​d.h>#include <un​ist​d.h>

int pipe(int pipe(
int fd[2]int fd[2]
))

Creates an unnamed pipe
(unidirectional).
fd[2] are two descriptor
associated with the “read” end of
the pipe (fd[0]) and with the
“write” end of the pipe (fd[1]).
Return 0 if the kernel could
allocate enough space, -1
otherwise.

int writeint write
(int fd,(int fd,
char *char *
buf, intbuf, int
size)size)

The classic write function is
used to write inside the buffer.
fd in this case is the descriptor of
the write end of the pipe.

int readint read
(int fd,(int fd,
char *char *
buf, intbuf, int
size)size)

The classic read function is user
to read data from the pipe.
fd is the descriptor of the read
end of the pipe.

Named Pipes or FIFONamed Pipes or FIFO

#include <fc​ntl.h>#include <fc​ntl.h>

By Gorge97Gorge97
cheatography.com/gorge97/

Not published yet.
Last updated 10th July, 2022.
Page 2 of 3.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/gorge97/
http://www.cheatography.com/gorge97/cheat-sheets/c-multiprocessing-and-multithreading
http://www.cheatography.com/gorge97/
http://crosswordcheats.com

C Multiprocessing & Multithreading Cheat Sheet
by Gorge97 via cheatography.com/154085/cs/33088/

Named Pipes or FIFO (cont)Named Pipes or FIFO (cont)

int mkfifo​‐int mkfifo​‐
(const char(const char
*path,*path,
mode_tmode_t
mode);mode);

Creates a named pipe (FIFO)
path corres​ponds to the
name of the pipe;
mode corres​ponds to the
permission mode flags.

intint
open(constopen(const
char *path,char *path,
int flags)int flags)

Open the fifo defined by the
name saved in path;
for the flag parameter use
O_WRONLY for a write only
pipe or O_EDONLY for a
read only pipe.

int write (intint write (int
fd, char *fd, char *
buf, intbuf, int
size)size)

The classic write function is
used to write inside the
buffer.
fd in this case is the
descriptor of the write end of
the pipe.

int read (intint read (int
fd, char *fd, char *
buf, intbuf, int
size)size)

The classic read function is
user to read data from the
pipe.
fd is the descriptor of the
read end of the pipe.

SignalsSignals

#include <si​gna​l.h>#include <si​gna​l.h>

Signals (cont)Signals (cont)

intint
kill(pid_tkill(pid_t
pid, intpid, int
sig)sig)

Send a signal to the process
indicated by the parameter pid.
pid is the pid of the process
that will receive the signal;
if set to 0 all the processes in
the process group of the
current process receive the
signal;
sig is the type of the signal

sighan​‐sighan​‐
dler_tdler_t
signal(intsignal(int
signum,signum,
sighan​‐sighan​‐
dler_tdler_t
handler)handler)

Installs a new signal handler
for the signal with number
signum.
The signal handler is set to
handler which may be a user
specified function or a
standard function as SIG_IGNSIG_IGN

unsignedunsigned
intint
alarm(​‐alarm(​‐
uns​igneduns​igned
intint
seconds)seconds)

Causes the system to generate
a SIGALRM signal for the
process after the number of
real‐time seconds specified by
seconds have elapsed.

By Gorge97Gorge97
cheatography.com/gorge97/

Not published yet.
Last updated 10th July, 2022.
Page 3 of 3.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/gorge97/
http://www.cheatography.com/gorge97/cheat-sheets/c-multiprocessing-and-multithreading
http://www.cheatography.com/gorge97/
http://crosswordcheats.com

	C Multiprocessing & Multithreading Cheat Sheet - Page 1
	Multip­roc­essing
	Shared Memory
	Process Syncro­niz­ation

	C Multiprocessing & Multithreading Cheat Sheet - Page 2
	Message Queue
	Unnamed Pipes
	Named Pipes or FIFO

	C Multiprocessing & Multithreading Cheat Sheet - Page 3
	Signals

