The basics	
Import library	import networx as nx
Import matplotlib for graph drawing	import matplo tli b.p yplot as plt
Initialize (Di)graphs	$\mathrm{G}=\mathrm{nx} . \mathrm{Gra} \mathrm{ph}(), \mathrm{G}=\mathrm{nx}$. DiG raph()
Create a (Di)graph from another graph	$G=n x . G r a \operatorname{ph}(H), G=n x . D i G$ raph $($ H)
Copy existing graphs	$\mathrm{G} 2=\mathrm{G} 1 . \operatorname{copy}()$

Unweighted node and edge creation/deletion	
Add nodes	```G.add_ node(1) G.add nod es from(['a', 'b'])```
Add (directed) edges	```G.add_ edge(1, 2) G.add_ edg es_ fro m([(1, 'a'), (1, 'c')])```
Delete nodes	G.remo ve_ node(1) G.remo ve_ nod es_ fro m(['a', 'b'])
Delete edges	```G.remo ve_ edge(1, 2) G.remo ve_ edg es_ fro m([(1, 'a'), (1, ' C')])```
If G is directed, then these take into account edge direction.	

Attributes can have any name (color, timestamp, weight, etc). However for edge weights they should have 'weight', as many functions for weighted graphs assume it.

Basic graph properties	
Number of nodes	$N=\operatorname{len}(\mathrm{G} \cdot \mathrm{n}$ od es())
Number of edges	$\mathrm{E}=\operatorname{len}(\mathrm{G} \cdot \mathrm{e}$ dg es())
Node-degree dictionary	degreedict $=$ G.degrees
Directedness	G.is_d ire cted(), G.is_u ndi rec ted()
Planarity	G.is_p lanar()
Diameter, radius	$\mathrm{d}=\mathrm{nx}$. dia met er(G), $\mathrm{r}=\mathrm{nx} . \operatorname{rad}$ ius (G)
Average shortest path length	```aspl = nx.ave rag e_s hor tes t_p ath _le ngth(G)```

By gonz95alo

cheatography.com/gonz95alo/

Published 7th September, 2022.
Last updated 23rd October, 2022.
Page 1 of 3 .

Sponsored by Readable.com
Measure your website readability! https://readable.com

NetworkX Cheat Sheet

by gonz95alo via cheatography.com/152363/cs/32835/

	G.is_w eak ly_ con nec ted(),
	G.is_s tro ngl y_c onn ected()

By gonz95alo

cheatography.com/gonz95alo/

Published 7th September, 2022.
Last updated 23rd October, 2022.
Page 2 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

Some matricial representations (cont)	
Laplacian matrix eigenvalues	$\begin{aligned} & \text { eigs }=\text { nx.lap lac ian _sp ect r } \\ & \text { um(G) } \end{aligned}$
Google matrix (standard)	Goog = nx.goo gle _ma trix(G)

Sparse matrices/arrays are memory efficient. See the Scipy page on them for their methods, or convert them to numpy arrays with spars
e _ar ray.to dense()

Graph plotting

command,
standard
options
Node
positi-
oning
options (I)

positioning
options (II)
Node

```
colors and node_size = sizelist
```

sizes in
nx.draw()
Edge edge_color = colorlist
colors and width = widthlist
widths in
nx.draw()
Node fine- nx.dra w_n etw ork x _n odes (G, other options)
tuning
Edge fine- nx.dra w_n etw ork x _e dges (G, other options)
tuning
_la you $\mathrm{t}(\mathrm{G})$]

Centrality measures
Degree $\quad C=n x . d e g$ ree _ce ntr ali ty (G)
Betwee- $\quad C=n x$.bet wee nes s_c ent ral ity (G)
nness
Closeness $C=n x . c l o$ sen ess _ce ntr ali ty (G)
Eigenv- $\quad C=n x . e i g$ env ect or_cen tra lit y_n umps
ector
Katz $\quad C=n x . k a t z_{-} c$ ent ral ity _nu mpy (G, alphé $a=1.0$)

PageRank $C=n x . p a g$ era $n k(G, a l p h a=0.1$, person ali None)
HITS $\quad C=n x . h i t s(G)$

All measures return a dictionary \{node: value\}. They do not take pos $=[n x . c i$ rcu lar_la you $t(G)$, nx.pla nar intpaccountweights, one needsto_provide an extra argument weigh
$t=$ 'w eight' in order to consider them.

Undirected graph generators

Cycle graph	$\mathrm{G}=\mathrm{nx}$. cyc le_gra ph(N)
Star graph	$\mathrm{G}=\mathrm{nx}$. sta r_g raph (N)
Complete graph	$\mathrm{G}=\mathrm{nx} . \mathrm{com}$ ple te_gra ph(N)
Erdös-Renyi (random)	$\begin{aligned} & G=n x . e r d \text { os_ ren yi_ gra ph(N, p } \\ & \text {) } \end{aligned}$
Barabasi-Albert (scale-free)	$\begin{aligned} & G=n x \cdot b a r ~ a b a ~ s i _~ a l b ~ e r t ~ \end{aligned} \text { gr aph }$
Watts-Strogatz (small world)	```G = nx.wat ts_ str oga tz_ gra ph(N, p)```

By gonz95alo

cheatography.com/gonz95alo/

Published 7th September, 2022.
Last updated 23rd October, 2022. Page 3 of 3 .

Sponsored by Readable.com
Measure your website readability!
https://readable.com

