
High Performance Tricks with Python Cheat Sheet
by gonz95alo via cheatography.com/152363/cs/34482/

A word of adviceA word of advice

Before jumping into parallelization and code optimization, try to
understand what you are trying to achieve, in comparison with what
you've written. Is your code not clean enough? Perhaps untangling it
and using of other libraries will help. Does your code make many
read/write operations? Perhaps parallelizing in threads will speed it
up. Does your code perform the same task over and over again, with
minimal changes? Perhaps using parallelization in processes will aid
you.
Perhaps, perhaps, perhaps... think about what you have just coded.

Concurrent processesConcurrent processes

Main benefit Parallelize CPU-bound tasks, independent
from each other.

Import class from concurrent.futures import
ProcessPoolExecutor

Run parallel tasks with ProcessPoolExecutor() as
executor:
 results = executor.map‐
(func, list)

Submit a specific
task to a core

with ProcessPoolExecutor() as
executor:
 results = executor.sub‐
mit(func)

Option (number of
cores)

ProcessPoolExecutor(max_‐
workers=10)

Extra function arguments can be Included before mapping the
function in the executor. In order to do so, we need to create a partial
version of the function with partial_func = functo‐
ols.partial(func, a=a, b=b, ...).

Concurrent threadsConcurrent threads

Main benefit Parallelize I/O-bound tasks, independent
from each other.

Import class from concurrent.futures import
ThreadPoolExecutor

Run parallel tasks with ThreadPoolExecutor() as
executor:
 results = executor.map‐
(func, list)

Submit a specific
task to a core

with ThreadPoolExecutor() as
executor:
 results = executor.sub‐
mit(func)

Concurrent threads (cont)Concurrent threads (cont)

Option (number of
cores)

ThreadPoolExecutor(max_w‐
orkers=10)

Extra function arguments can be Included before mapping the
function in the executor. In order to do so, we need to create a partial
version of the function with partial_func = functo‐
ols.partial(func, a=a, b=b, ...).

Numba libraryNumba library

Main
benefit

Useful decorators which compile the function the first
time it is used, speeding it up in subsequent runs.

Importing
decorators

from numba import jit, njit

Using jit @jit
def function(...):
 ...

Using njit @njit
def function(...):
 ...

This module is very limited, in the sense that only basic and/or
numpy operations and classes can speed up. Neither scipy nor
pandas or networkx can be improved. If jit is used, then those
functions are treated as usual. If njit is used, then the code will fail
to compile as it won't know what to do with them.

CachingCaching

By gonz95alogonz95alo
cheatography.com/gonz95alo/

Not published yet.
Last updated 3rd November, 2022.
Page 1 of 1.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/gonz95alo/
http://www.cheatography.com/gonz95alo/cheat-sheets/high-performance-tricks-with-python
http://www.cheatography.com/gonz95alo/
http://crosswordcheats.com

	High Performance Tricks with Python Cheat Sheet - Page 1
	A word of advice
	Numba library
	Concurrent processes
	Caching
	Concurrent threads

