

Momentum - Physics 12 - Unit 2 Cheat Sheet by goldennfluff (goldennfluff) via cheatography.com/209545/cs/45074/

Formulas
p=mv
$\Delta p=m\Delta v=F_{net}\Delta t$
$\Sigma p_i = \Sigma p_f$

To Remember
Coordinate System needed
Draw it out if you need it
Remember you have to do x and y comp
List out all the values on the side write them all out - label angles too
i.e. m _A =5.0kg v _{Aix} =4.0m/s v _{Afx} =2.0m/s cos 30° v _{Afy} =2.0m/s sin
30° m _B =7.0kg m _B =0m/s v _B f=?

When dealing with inelastic/stick together objects, remember they
are one thing - combined

Key	Conce	pts
-----	-------	-----

A **state** is a possible configuration that a system can exist in accordance with the laws of physics.

Phase space contains all the configuration.

Deterministic is when you know where you came from (the past) and where you are going next (the future) if you know where you are at the present.

Momentum - p - unit - kg • m/s

Impulse - ∆p = change in momentum

Collisions	
Elastic Collisions	$\mbox{\bf p}$ and $\mbox{\bf E}_{\mbox{\bf K}}$ are $\mbox{\bf conserved}$ - perfectly bounce off of each other
	$\Sigma p_i = \Sigma p_f$ and $\Sigma E_{ki} = \Sigma E_{kf}$
	unrealistic irl - nothing is lost thru sound/heat/etc.
Inelastic Collisions	p is $\operatorname{\textbf{conserved}}$, $\operatorname{\textbf{E}}_k$ isn't - stick together
	$\Sigma p_i = \Sigma p_f$ and $\Sigma E_{ki} \neq \Sigma E_{kf}$
Explosion	explodes into multiple pieces
	$\Sigma p_i = \Sigma p_f$ and $\Sigma E_{ki} \neq \Sigma E_{kf}$

By **goldennfluff** (goldennfluff)

Published 30th May, 2025. Last updated 30th May, 2025. Page 1 of 1. Sponsored by Readable.com

Measure your website readability!
https://readable.com

cheatography.com/goldennfluff/