

Engineering Materials Cheat Sheet by Glory (gloryo) via cheatography.com/65951/cs/18457/

Material Pro	pperties
Strength	The ability of a material to resist an applied force
Tensile Strength	The maximum pulling force a material can withstand before failure
Yield Strength	The amount of stress at which the material will reach plasticity
Ultimate Tensile Strength (UTS)	The amount of stress at which a material breaks
Compressi ve Strength	The resistance of a material under a pushing force
Ductility	The amount that a material can be stretched while being deformed
Malleability	The ability of a material to be deformed without breaking
Hardness	The ability of a material to resist wear and abrasion
Toughness	The ability of a material to withstand an impact without breaking
Brittleness	The potential for a material to shatter when experiences an impact
Stiffness	The ability of a material to resist bending
Elasticity	The ability of a material to return to its original shape when the load upon its removed
Plasticity	When you stretch a material and it doesn't return to its original shape once the force is removed

Calculatio	ns
Stress	The force per unit area of a material- N/mm ²
Stress Equation	Stress= force/cross sectional area
Stress Symbol Equation	σ= F/A
Strain	The ratio of an amount a material is extended to its original length
Strain Equation	Strain= Change in length/Original length
Strain Symbol Equation	$\varepsilon = \Delta I/I$
Young's Modulus	The measure of how much force is needed to stretch or compress a substance- N/mm²
Young's Equation	Young's Modulus= Stress/Strain
Young's Symbol Equation	Ε= σ/ε
Factor of Safety	How mcuh stronger the product is than it needs to be for expected loading
FoS Equation	FoS= Yield Stress/Load Stress
FoS Symbol Equation	FoS= σy/σL

Equation		
Metals and Alloys		
Ferrous	Contains iron	
Metals	Generally tougher and stronger	
	They are magnetic	
Non-	Doesn't contain iron	
Ferrous	Malleable and ductile	
Metals	They are not magnetic	
Alloys	Made from two or more base metals to improve properties	

Ferrous Metals

Metals and Al	loys (cont)		
Cast Iron	3-3.5% Carbon Cheap, rusts easily, hard, good compressive strength Anvils, vices		
Low Carbon Steel	Less than 0.3% Carbon Lower strength, tough, cheap Nails, Car bodies		
High Carbon Steel	0.8-1.4% Carbon Strong and tough Difficult to form Saw blades, hammers		
Stainless Steel	At least 11.5% Chromium Strong, hard, expensive Difficult to machine Good corrosion resistance Cutlery		
Non-Ferrous	Non-Ferrous Metals		
Aluminium and its alloys	Light, soft, ductile, malleable Good conductor of heat and electricity Corrosion-resistant Aircraft bodies, foil, saucepans		
Copper	Tough, malleable Good conductor of heat and electricity Easily Joined Wires, printed circuits		
Brass	65% Copper and 35% Zinc Casts well, easily joined Castings, boat fittings		
Bronze	90% Copper and 10% TIn Tough and hardwearing Bearings, coins, water and steam valves		

By **Glory** (gloryo) cheatography.com/gloryo/

Not published yet.

Last updated 4th January, 2019.

Page 1 of 2.

Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com

Engineering Materials Cheat Sheet by Glory (gloryo) via cheatography.com/65951/cs/18457/

Metals	s and Alloys (cont)
Lead	Very soft, low m.p, heavy common metal Roof coverings
Zinc	Poor strength-weight ratio, low m.p Coating steel

Coating steel			
Polymers			
Polymers	A plastic		
Thermopl astic Polymer	Can be reshaped when heated		
Thermose tting Polymer	Cannot be reshaped when heated		
	Thermoplastic		
ABS	Strong and rigid	Toys Keyboard	
Acrylic	Transparent, hard wearing	Plastic Windows Bath tubs	
Nylon	Ductile, durable	Gear wheels	
Polycarbo nate	High Strength Heat resistant	Safety glasses DVDs	
Polystyre ne	Tough, Good impact strength	Packaging, Foam cups	
	Thermosetting		
Ероху	Stiff and brittle Temperature, Chemical and Electrical resistance	Circuit boards, Electrical insulator	
Polyester Resin	Cheap, good strength and stiffness	Suitcases	
Melamine Resin	Resistant to some chemicals and stains	Laminate coverings for kitchen worktops	
Polyureth ane	Hard with high strength Flexible and	Hoses, surface coatings and	

Polymers (cont)			
Vulcanised Rubber	Elastic, High tensile strength, resistant to abrasion		Tyres, shoe sales, bouncing balls
Composites	, Cer	amics & Timbeı	r
Composites		A type of material made be combining two or more different types of material	
Reinforcemo	rement The particles of fibres wi a composite matrix that		

increases its strength

Racing

bicycles

Extremely high

Carbon fibres in strength, Low

an epoxy resin matrix	density, Expensive	Helmets
GRP: Glass fibres in a polyester resin matrix	High strength, Good chemical resistance, Lower cost than CRP	Canoes Water tanks
Plywood: Layers of wood bonded at 90° to each other, using adhesive matrix	Smooth surface and good strength, May be covered in veneer	Furniture Boat building

CRP:

tough
Low thermal
conductivity

By **Glory** (gloryo) cheatography.com/gloryo/

sealants

Not published yet. Last updated 4th January, 2019. Page 2 of 2. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com