Cheatography

Engineering Materials Cheat Sheet by Glory (gloryo) via cheatography.com/65951/cs/18457/

Material Properties			
Strength	The ability of a material to resist an applied force		
Tensile Strength	The maximum pulling force a material can withstand before failure		
Yield Strength	The amount of stress at which the material will reach plasticity		
Ultimate Tensile Strength (UTS)	The amount of stress at which a material breaks		
Compressi ve Strength	The resistance of a material under a pushing force		
Ductility	The amount that a material can be stretched while being deformed		
Malleability	The ability of a material to be deformed without breaking		
Hardness	The ability of a material to resist wear and abrasion		
Toughness	The ability of a material to withstand an impact without breaking		
Brittleness	The potential for a material to shatter when experiences an impact		
Stiffness	The ability of a material to resist bending		
Elasticity	The ability of a material to return to its original shape when the load upon its removed		
Plasticity	When you stretch a material and it doesn't return to its original shape once the force is removed		

Calculations			
Stress	The force per unit area of a material- N/mm²		
Stress Equation	Stress= force/cross sectional area		
Stress Symbol Equation	σ= F/A		
Strain	The ratio of an amount a material is extended to its original length		
Strain Equation	Strain= Change in length/Original length		
Strain Symbol Equation	$\varepsilon = \Delta I/I$		
Young's Modulus	The measure of how much force is needed to stretch or compress a substance- N/mm ²		
Young's Equation	Young's Modulus= Stress/Strain		
Young's Symbol Equation	Ε= σ/ε		
Factor of Safety	How mcuh stronger the product is than it needs to be for expected loading		
FoS Equation	FoS= Yield Stress/Load Stress		
FoS Symbol Equation	FoS= σy/σL		
Metals and			
metals and	Alloys		

Ferrous Metals	Contains iron Generally tougher and stronger They are magnetic
Non- Ferrous Metals	Doesn't contain iron Malleable and ductile They are not magnetic
Alloys	Made from two or more base metals to improve properties

Ferrous Metals

С

By Glory (gloryo)

cheatography.com/gloryo/

Not published yet. Last updated 4th January, 2019. Page 1 of 2.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

Cast Iron	3-3.5% Carbon Cheap, rusts easily, hard, good compressive strength Anvils, vices		
Low Carbon Steel	Less than 0.3% Carbon Lower strength, tough, cheap Nails, Car bodies		
High Carbon Steel	0.8-1.4% Carbon Strong and tough Difficult to form Saw blades, hammers		
Stainless Steel	At least 11.5% Chromium Strong, hard, expensive Difficult to machine Good corrosion resistance Cutlery		
Non-Ferrous Metals			
Aluminium and its alloys	Light, soft, ductile, malleable Good conductor of heat and electricity Corrosion-resistant Aircraft bodies, foil, saucepans		
Copper	Tough, malleable Good conductor of heat and electricity Easily Joined Wires, printed circuits		
Brass	65% Copper and 35% Zinc Casts well, easily joined Castings, boat fittings		
Bronze	90% Copper and 10% TIn Tough and hardwearing Bearings, coins, water and steam valves		

Cheatography

Engineering Materials Cheat Sheet by Glory (gloryo) via cheatography.com/65951/cs/18457/

Metals and	d Alloys (cont)			
Lead Ve me Ro	Lead Very soft, low m.p, heavy common metal Roof coverings			
Zinc Po Co	r strength-weight ratio, low m.p ting steel			
Polymers				
Polymers A plastic				
Thermopl astic Polymer	Can be reshaped when heated			
Thermose tting Polymer	Cannot be reshaped when heated			
	Thermoplastic			
ABS	Strong and rigid	Toys Keyboard		
Acrylic	Transparent, hard wearing	Plastic Windows Bath tubs		
Nylon	Ductile, durable	Gear wheels		
Polycarbo nate	High Strength Heat resistant	Safety glasses DVDs		
Polystyre ne	Tough, Good impact strength	Packaging, Foam cups		
	Thermosetting			
Ероху	Stiff and brittle Temperature, Chemical and Electrical resistance	Circuit boards, Electrical insulator		
Polyester Resin	Cheap, good strength and stiffness	Suitcases		
Melamine Resin	Resistant to some chemicals and stains	Laminate coverings for kitchen worktops		
Polyureth ane	Hard with high strength Flexible and tough Low thermal conductivity	Hoses, surface coatings and sealants		

Polymers (cont)						
Vulcanised Rubber	Elastic, High tensile strength, resistant to abrasion		Tyres, shoe sales, bouncing balls			
Composites	, Ceram	iics & Timber				
Composites	A type of material made to combining two or more different types of material		ial made by or more of materials			
Reinforcem	ent T a in	he particles of composite ma creases its str	fibres within atrix that rength			
CRP: Carbon fibre an epoxy res matrix	E s in st sin de E	xtremely high trength, Low ensity, xpensive	Racing bicycles Helmets			
GRP: Glass fibres polyester res matrix	H in a G iin re La C	igh strength, food chemical esistance, ower cost thar RP	Canoes Water tanks			
Plywood: Layers of wo bonded at 90 to each othe using adhesi matrix	S od ai)° st r, be ve ve	mooth surface nd good trength, May e covered in eneer	e Furniture Boat building			

By **Glory** (gloryo) cheatography.com/gloryo/ Not published yet. Last updated 4th January, 2019. Page 2 of 2. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com