\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{giofrombio} \pdfinfo{ /Title (cell-transport-ap-bio.pdf) /Creator (Cheatography) /Author (giofrombio) /Subject (Cell Transport AP Bio Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{82BF6F} \definecolor{LightBackground}{HTML}{F7FBF6} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Cell Transport AP Bio Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{giofrombio} via \textcolor{DarkBackground}{\uline{cheatography.com/59293/cs/15566/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}giofrombio \\ \uline{cheatography.com/giofrombio} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 25th April, 2018.\\ Updated 25th April, 2018.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Essential Knowledge}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{ESSENTIALS}} & {\bf{RELATION TO TOPIC}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \{\{noshy\}\}Cell membranes are selectively permeable due to their stx & \{\{noshy\}\}Cell membranes are composed of phospholipid bylayer that is {\emph{both}} hydrophobic and hydrophilic which allows for only desired substances to pass \tn % Row Count 10 (+ 8) % Row 2 \SetRowColor{LightBackground} \{\{noshy\}\}Growth, reproduction, \& dynamic homeostasis require that cells create and maintain internal environments that are different from their external environments & \{\{noshy\}\}Without maintaining a balanced internal environment the cell may die from shriveling up or exploding \tn % Row Count 19 (+ 9) % Row 3 \SetRowColor{white} \{\{noshy\}\}Growth \& dynamic homeostasis are maintained by their constant movement of molecules across membranes & \{\{noshy\}\}Cells communicate through membranes which may include receiving signals and materials, or sending off waste or signals of their own as hormones or electricity \tn % Row Count 28 (+ 9) % Row 4 \SetRowColor{LightBackground} \{\{noshy\}\}Eukaryotic cells maintain internal membranes that partition the cell into specialized regions & \{\{noshy\}\}Eukaryotic cells have organelles specialized for tasks made from the membrane such as the mitochondria and golgi body \tn % Row Count 35 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Big Ideas}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis ({\bf{Energy}}).} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Relates to Big Idea 1: Evolution} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Processes such as diffusion, and communication did not always exist and were selected as environmentally advantageous so organisms with the trait survived to pass down this genetic information} \tn % Row Count 10 (+ 6) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Relates to Big Idea 3: Infromation} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Cells share information through process of cell signal communication seen as hormones, and proteins that can trigger or stop cell processes such as transcription and replication. Observed in Cell Cycle communication} \tn % Row Count 16 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Relates to Big Idea 4: Systems} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Organism body systems use cell communication to trigger specific events to occur, such as the electrochemical gradient associated with the nervous system's nerve cells and the uses of hormonal communication among cells in the Endocrine System} \tn % Row Count 23 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Vocabulary}} \tn % Row 0 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}diffusion & \{\{fa-arrow-right\}\}water potential(ψ) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \{\{fa-arrow-right\}\}osmosis & \{\{fa-arrow-right\}\}osmoregulation \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}plasmolysis & \{\{fa-arrow-right\}\}cell wall \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \{\{fa-arrow-right\}\}ampiphatic & \{\{fa-arrow-right\}\}electrochemical gradient \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}exocytosis & \{\{fa-arrow-right\}\}endocytosis \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \{\{fa-arrow-right\}\}phagocytosis & \{\{fa-arrow-right\}\}cell junctions \tn % Row Count 13 (+ 2) % Row 6 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}hypotonic & \{\{fa-arrow-right\}\}hypertonic \tn % Row Count 15 (+ 2) % Row 7 \SetRowColor{white} \{\{fa-arrow-right\}\}isotonic & \{\{fa-arrow-right\}\}fluid mosaic model \tn % Row Count 17 (+ 2) % Row 8 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}selective permeability & \{\{fa-arrow-right\}\}surface area \tn % Row Count 19 (+ 2) % Row 9 \SetRowColor{white} \{\{fa-arrow-right\}\}concentration gradient & \{\{fa-arrow-right\}\}aquaporin \tn % Row Count 21 (+ 2) % Row 10 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}channel protein & \{\{fa-arrow-right\}\}osmotic pressure \tn % Row Count 23 (+ 2) % Row 11 \SetRowColor{white} \{\{fa-arrow-right\}\}solute & \{\{fa-arrow-right\}\}nuclear envelope \tn % Row Count 25 (+ 2) % Row 12 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}facilitated diffusion & \{\{fa-arrow-right\}\}transmembrane protein \tn % Row Count 27 (+ 2) % Row 13 \SetRowColor{white} \{\{fa-arrow-right\}\}active transport & \{\{fa-arrow-right\}\}carrier protein \tn % Row Count 29 (+ 2) % Row 14 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}golgi body & \{\{fa-arrow-right\}\}tonicity \tn % Row Count 31 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Vocabulary (cont)}} \tn % Row 15 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}plasma membrane & \{\{fa-arrow-right\}\}passive transport \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Related Labs}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{LAB NAME}} & {\bf{LAB QUESTION}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\emph{Investigation 4}} Diffusion and Osmosis\{\{noshy\}\} & What causes plants to wilt if they are not watered? \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} {\emph{Investigation 11}} Transpiration\{\{noshy\}\} & What factors including environmental variables, affect the rate of transpiration in plants? \tn % Row Count 9 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{PASSIVE AND ACTIVE TRANSPORT}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{All cells need to move materials in and out of the cell. There are two types of transport that cells carry out: PASSIVE and ACTIVE} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{PASSIVE}} & {\bf{ACTIVE}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}When small particles move from a high to a low concentration, it is called passive transport. This is the normal flow of materials. & \{\{fa-arrow-right\}\}When small particles move from a low to a high concentration, it is called active transport. This is AGAINST the normal flow of materials \tn % Row Count 12 (+ 8) % Row 3 \SetRowColor{white} \{\{fa-arrow-right\}\}There are two types of passive transport. Osmosis is when water is moving high to low through a cell membrane, and diffusion is when all other small particles move from high to low concentration. & \{\{fa-arrow-right\}\}This type of transport requires ATP or energy \tn % Row Count 23 (+ 11) % Row 4 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}This type of transport does NOT require ATP or energy & \{\{fa-arrow-right\}\}If large particles need to enter or leave the cell, they require special types of active transport called endocytosis and exocytosis \tn % Row Count 31 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{PASSIVE AND ACTIVE TRANSPORT (cont)}} \tn % Row 5 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}Cells getting rid of CO2 & \{\{fa-arrow-right\}\}Endocytosis occurs when a cell needs to bring in large particles. Think about "endo" sounding like "in the" cell \tn % Row Count 7 (+ 7) % Row 6 \SetRowColor{white} \{\{fa-arrow-right\}\}Cells taking in O2 for cellular respiration & \{\{fa-arrow-right\}\}Exocytosis occurs when a cell needs to take out large particles. Think about "exo" sounding like "exiting" the cell. This is how the Golgi ships proteins out of the cell \tn % Row Count 17 (+ 10) % Row 7 \SetRowColor{LightBackground} \{\{fa-arrow-right\}\}Water moving across the cell membrane when needed or as a waste product & \{\{fa-arrow-right\}\}cells brining in large food particles, cells releasing waste, white blood cells "eating" pathogens \tn % Row Count 23 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.08602 cm} x{1.16956 cm} x{0.96071 cm} x{0.96071 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Cell Signaling}} \tn % Row 0 \SetRowColor{LightBackground} {\emph{Direct Contact}} & {\emph{Paracrine Signaling}} & {\emph{Synaptic Signaling}} & {\emph{Endocrine Signaling}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Cell/cell junction, gap junctions & localized only & Occurs in neurons & Long distance and long term \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} & \{\{noshy\}\}{\bf{example}}-growth factors & {\bf{example}}-neurotransmitters & \{\{noshy\}\}{\bf{example}}-hormones \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Diagrams}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/giofrombio_1524587198_Transport.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{https://www.slideshare.net/ToniFoley/24-cell-membrane-and-transport by Toni Foley}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Endocytosis Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/giofrombio_1524587385_2000px-Endocytosis_types.svg.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{https://en.wikipedia.org/wiki/Endocytosis}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{0.86963 cm} p{0.73232 cm} x{2.97505 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Answer Key}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{QUESTION}} & {\bf{ANSWER}} & {\bf{REASONING}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 1 & D & The fluid-mosaic model is the universally agreed upon model of the cell because it represents the fluidity of the phospholipid composed cell membrane \tn % Row Count 8 (+ 6) % Row 2 \SetRowColor{LightBackground} 2 & A & A hypertonic solution is one in which the solute concentration is higher and therefore due to a desire for an isotonic situation water will be drawn towards the high containing of solutes \tn % Row Count 16 (+ 8) % Row 3 \SetRowColor{white} 3 & C & Osmosis is the diffusion of water according to the concentration gradient \{\{nl\}\}that does not require energy \tn % Row Count 21 (+ 5) % Row 4 \SetRowColor{LightBackground} 4 & C & The sodium-potassium pump exchanges sodium ions for potassium ions across the plasma membrane of animal cells. It accomplishes the transport of three Na+ to the outside of the cell and the transport of two K+ ions to the inside with protein pumps that utilize ATP. \tn % Row Count 32 (+ 11) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{0.86963 cm} p{0.73232 cm} x{2.97505 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Answer Key (cont)}} \tn % Row 5 \SetRowColor{LightBackground} 5 & A & Solution X is salt water because the water in the cell was drawn out in attempts to balance with the exterior salt content. Remember that SALT SUCKS! \tn % Row Count 6 (+ 6) % Row 6 \SetRowColor{white} 6 & D & The protozoans lost water and shriveled up due to the fact that water was diffused out of the cell through osmosis in an attempt to maintain equal conditions \tn % Row Count 13 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{FRQ 1}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1. Cells transport substances across their membranes. Choose three of the following four types of cellular transport. \newline % Row Count 3 (+ 3) \{\{fa-arrow-right\}\}Osmosis \newline % Row Count 4 (+ 1) \{\{fa-arrow-right\}\}Active Transport \newline % Row Count 5 (+ 1) \{\{fa-arrow-right\}\}Facilitated Diffusion \newline % Row Count 6 (+ 1) \{\{fa-arrow-right\}\}Endocytosis/Exocytosis \newline % Row Count 7 (+ 1) For each of the three transport types you choose, \newline % Row Count 8 (+ 1) a) Describe the transport process and explain how the organization of cell membranes functions in \newline % Row Count 10 (+ 2) the movement of specific molecules across membranes; and \newline % Row Count 12 (+ 2) b) Explain the significance of each type of transport to a specific cell (you may use different cell types as examples).% Row Count 15 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{FRQ 2}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. During microscopic examination of human tissue samples, a student \newline % Row Count 2 (+ 2) observed the following at different magnifications. In some cases, individual \newline % Row Count 4 (+ 2) cells were clearly visible (A and B). In others, the magnification was too low \newline % Row Count 6 (+ 2) to clearly visualize individual cells although the dark patches of nuclei are \newline % Row Count 8 (+ 2) visible in fig C. \newline % Row Count 9 (+ 1) a. Identify the image that contains a cell or cells with the lowest surface area to \newline % Row Count 11 (+ 2) volume ratio. Explain your reasoning and provide a sample calculation to \newline % Row Count 13 (+ 2) illustrate this. \newline % Row Count 14 (+ 1) b. Identify an image that shows a tissue that is ideally suited for the exchange of \newline % Row Count 16 (+ 2) materials with the environment. Justify your response and suggest the role this \newline % Row Count 18 (+ 2) tissue may have in the organism. \newline % Row Count 19 (+ 1) c. Explain how surface area to volume ratio can place a limit on the maximum size \newline % Row Count 21 (+ 2) of a cell. \newline % Row Count 22 (+ 1) d. Describe how you could model that the rate of exchange of materials is affected \newline % Row Count 24 (+ 2) by surface area to volume ratio. (Option – support your written response with \newline % Row Count 26 (+ 2) clearly labeled diagrams).% Row Count 27 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{FRQ 2 Figures}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/giofrombio_1524516132_Presentation1.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Multiple Choice Practice Questions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{1}} What is the current model of cell membranes?} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{A}} Extracellular Model\{\{nl\}\}{\bf{B}} Phospholipid Model\{\{nl\}\}{\bf{C}} Cellular Model\{\{nl\}\}{\bf{D}} Fluid-mosaic Model} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{2}} If a solution outside a cell is more concentrated so that the cell loses water to its environment, the external solution is said to be \_\_\_\_\_\_\_\_\_\_ to the cell contents.} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{A}} hypertonic\{\{nl\}\}{\bf{B}} in equilibrium\{\{nl\}\}{\bf{C}} isotonic\{\{nl\}\}{\bf{D}} hypertonic} \tn % Row Count 10 (+ 6) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{3}} Osmosis is a process that} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{A}} moves water molecules from an area of higher concentration to an area of lower concentration, using energy\{\{nl\}\}{\bf{B}} involves the active transport of dissolved solids\{\{nl\}\}{\bf{C}} equalizes the concentration of particles by the movement of water molecules\{\{nl\}\}{\bf{D}} continues until the medium on each side of the membrane has become hypertonic} \tn % Row Count 19 (+ 9) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{4}} The sodium-potassium pump usually pumps} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{A}} potassium out of the cell\{\{nl\}\}{\bf{B}} sodium into the cell\{\{nl\}\}{\bf{C}} potassium into the cell \{\{nl\}\}{\bf{D}} only a potassium and sugar molecule together} \tn % Row Count 24 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Use the information below and your knowledge of biology to answer questions 5 through 6 which follow the reading passage}} \{\{nl\}\}Each student in a biology laboratory received two solutions. One solution was distilled water. The other was a salt solution with concentrations of salts slightly greater than that of a living cell. The solutions were labeled X and Y, respectively. The students were instructed to place some fresh-water protozoans in each of the solutions and to identify the solutions on the basis of their observations. The protozoans in solution X shriveled. Those in solution Y swelled up and burst.} \tn % Row Count 37 (+ 13) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Multiple Choice Practice Questions (cont)}} \tn % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{5}} These results indicate that} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{A}} solution X was salt water \{\{nl\}\}{\bf{B}} solution Y contained killer protozoans\{\{nl\}\}{\bf{C}} solution Y was salt water\{\{nl\}\}{\bf{D}} solution X was distilled water} \tn % Row Count 5 (+ 5) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{6}} The protozoans in solution X shriveled because} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{A}} golgi bodies in the test organisms lost their function\{\{nl\}\}{\bf{B}} their membranes were more permeable to the passage of water than the organisms in Y \{\{nl\}\}{\bf{C}} osmotic pressure failed to operate\{\{nl\}\}{\bf{D}} a disproportionate amount of water diffused from the protozoans} \tn % Row Count 13 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Key is on the last page}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}