Cheatography

Working with variables

To create a new variable,
use an assignment
statement to assign a
value to the variable.

To display the value of a
variable, type the variable
name, preceded by a
dollar sign ($).

To change the value of a
variable, assign a new
value to the variable.

To delete the value of a
variable, use the Clear--
Variable cmdlet or
change the value to $null.

To delete the variable,
use Remove-Variable or
Remove-ltem.

$MyVariable = 1, 2, 3
$Path = "C:\Windows\System32"

$MyVariable

$MyVariable =
"The green cat."
$MyVariable

The green cat.

Clear-Variable -Name MyVariable
$MyVariable = $null

Remove-Variable -Name MyVariable
Remove-Item -Path Variable:\MyVar-
iable

To get a list of all the variables in your PowerShell session, type Get-

Variable.

Variables are useful for
storing the results of
commands.

It is also possible to
assign values to multiple
variables with one
statement.

The next example

assigns multiple values to
multiple variables.

$Processes = Get-Process
$Today = (Get-Date).DateTime

$a=%$b=%c=0

$i,$j,$k = 10, "- # $iis 10, $j is "-
red", $true red", $k is True
$i,$j = 10, "red", # $iis 10, $jis
$true [object([]], Length 2

By giangpdh

cheatography.com/giangpdh/

Published 19th December, 2022.
Last updated 21st December, 2022.

Page 1 of 2.

PowerShell Cheat Sheet
by giangpdh via cheatography.com/137135/cs/36171/

Types of variables

$a=12
$a ="Word"
$a =12, "Word"

$a = Get-Childltem C:\Windows

To use cast notation, enter a

type name, enclosed in

brackets, before the variable
name (on the left side of the

assignment statement).

System.Int32
System.String

array of System.Int32,
System.String

FileInfo and DirectoryInfo types

[int}$number = 8

Variable substitution in strings

Concatenation

Variable substitution

$name = 'Kevin Marquette'
$message = 'Hello, ' + $name
$first = 'Kevin'

$last = 'Marquette'

$message = "Hello, $first $last."

Arrays

To create and initialize an
array, assign multiple
values to a variable.

The array sub-expression
operator creates an array
from the statements
inside it.

Where-Object filtering

Where()

Selects objects or object
properties.

$A =22,5,10,8,12,9,80

@(...)
$a = @("Hello World")

$p = @(Get-Process Notepad)

$data | Where-Object {$_.FirstName -eq
'Kevin'}

$data | Where FirstName -eq Kevin
$data.Where({$_.FirstName -eq 'Kevin'})

Get-Process | Select-Object -Property
ProcessName, Id, WS

Hash Tables

To create an empty hashtable in

the value of $hash, type:

You can also add keys and

$hash = @{}

$hash = @{ Number = 1; Shape

values to a hashtable when you = "Square"; Color = "Blue"}

create it.

Sponsored by Readable.com
Measure your website readability!

https://readable.com


http://www.cheatography.com/
http://www.cheatography.com/giangpdh/
http://www.cheatography.com/giangpdh/cheat-sheets/powershell
http://www.cheatography.com/giangpdh/
https://readable.com

Cheatography

Hash Tables (cont)

To display a hashtable that's $hash
saved in a variable, type the

variable name.

hashtables have Keys and $hash.keys

$hash.values

foreach ($Key in $hash.Keys) {
"The value of '$Key"' is:

$($hash[$Key])"

}

$hash["'<key>"] = "<value>"

$hash["Time"] = "Now"

Values properties.

You can iterate over the keys in
a hashtable to process the
values in several ways.

To add keys and values to a
hashtable, use the following
command format.

You can also add keys and Add(Key, Value)

values to a hashtable using the $hash.Add("Time", "Now")
Add method of the System.Co-

llections.Hashtable object.

PSCustomObject

Creating a $myObject = [PSCustomObject]@{
PSCustomObject Name = 'Kevin'
Language = 'PowerShell'
State = 'Texas'
}
Converting a $myHashtable = @{
hashtable Name = 'Kevin'

Language = 'PowerShell'
State = 'Texas'

$myObject = [pscustomobject]$myHashtable
$myObject | ConvertTo-Json -depth 1 | Set-Co-
ntent -Path $Path

$myObject = Get-Content -Path $Path |
ConvertFrom-Json

Saving to a file

Adding properties  $myObject | Add-Member -MemberType
NoteProperty -Name 'ID' -Value
'KevinMarquette'

$myObject.ID
Remove $myObject.psobject.properties.remove('ID')

properties

By giangpdh
cheatography.com/giangpdh/
Page 2 of 2.

PowerShell Cheat Sheet
by giangpdh via cheatography.com/137135/cs/36171/

PSCustomObiject (cont)

Enumerating
property names
Dynamically
accessing
properties
Convert PSCust-
omObject into a
hashtable

Testing for
properties

$myObject | Get-Member -MemberType
NoteProperty | Select -ExpandProperty Name

$myObject.'Name'

$hashtable = @{}
foreach( $property in $myobject.psobject.pr-
operties.name )
{

$hashtable[$property] = $myObject.$p-
roperty
}
if( $null -ne $myObject.ID )
if( $myobject.psobject.properties.match('ID').C-
ount)

Functions

A simple function

Parameters

function Get-Version {
$PSVersionTable.PSVersion
}
function Test-MrParameter {
param (
$ComputerName

)
Write-Output $ComputerName

Published 19th December, 2022.
Last updated 21st December, 2022.

Sponsored by Readable.com
Measure your website readability!
https://readable.com


http://www.cheatography.com/
http://www.cheatography.com/giangpdh/
http://www.cheatography.com/giangpdh/cheat-sheets/powershell
http://www.cheatography.com/giangpdh/
https://readable.com

	PowerShell Cheat Sheet - Page 1
	Working with variables
	Types of variables
	Variable substi­tution in strings
	Arrays
	Hash Tables

	PowerShell Cheat Sheet - Page 2
	Functions
	PSCust­omO­bject


