
PowerShell Cheat Sheet
by giangpdh via cheatography.com/137135/cs/36171/

Working with variablesWorking with variables

To create a new variable,
use an assignment
statement to assign a
value to the variable.

$MyVariable = 1, 2, 3
$Path = "C:\Windows\System32"

To display the value of a
variable, type the variable
name, preceded by a
dollar sign ($).

$MyVariable 1
2
3

To change the value of a
variable, assign a new
value to the variable.

$MyVariable =
"The green cat."
$MyVariable

The green cat.

To delete the value of a
variable, use the Clear-‐
Variable cmdlet or
change the value to $null.

Clear-Variable -Name MyVariable
$MyVariable = $null

To delete the variable,
use Remove-Variable or
Remove-Item.

Remove-Variable -Name MyVariable
Remove-Item -Path Variable:\MyVar‐
iable

To get a list of all the variables in your PowerShell session, type Get-
Variable.

Variables are useful for
storing the results of
commands.

$Processes = Get-Process
$Today = (Get-Date).DateTime

It is also possible to
assign values to multiple
variables with one
statement.

$a = $b = $c = 0

The next example
assigns multiple values to
multiple variables.

$i,$j,$k = 10, "‐
red", $true
$i,$j = 10, "red",
$true

$i is 10, $j is "‐
red", $k is True
$i is 10, $j is
[object[]], Length 2

Types of variablesTypes of variables

$a = 12 System.Int32

$a = "Word" System.String

$a = 12, "Word" array of System.Int32,
System.String

$a = Get-ChildItem C:\Windows FileInfo and DirectoryInfo types

To use cast notation, enter a
type name, enclosed in
brackets, before the variable
name (on the left side of the
assignment statement).

[int]$number = 8

Variable substitution in stringsVariable substitution in strings

Concatenation $name = 'Kevin Marquette'
$message = 'Hello, ' + $name

Variable substitution $first = 'Kevin'
$last = 'Marquette'
$message = "Hello, $first $last."

ArraysArrays

To create and initialize an
array, assign multiple
values to a variable.

$A = 22,5,10,8,12,9,80

The array sub-expression
operator creates an array
from the statements
inside it.

@(...)
$a = @("Hello World")
$p = @(Get-Process Notepad)

Where-Object filtering $data | Where-Object {$_.FirstName -eq
'Kevin'}
$data | Where FirstName -eq Kevin

Where() $data.Where({$_.FirstName -eq 'Kevin'})

Selects objects or object
properties.

Get-Process | Select-Object -Property
ProcessName, Id, WS

Hash TablesHash Tables

To create an empty hashtable in
the value of $hash, type:

$hash = @{}

You can also add keys and
values to a hashtable when you
create it.

$hash = @{ Number = 1; Shape
= "Square"; Color = "Blue"}

By giangpdhgiangpdh
cheatography.com/giangpdh/

Published 19th December, 2022.
Last updated 21st December, 2022.
Page 1 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/giangpdh/
http://www.cheatography.com/giangpdh/cheat-sheets/powershell
http://www.cheatography.com/giangpdh/
https://readable.com

PowerShell Cheat Sheet
by giangpdh via cheatography.com/137135/cs/36171/

Hash Tables (cont)Hash Tables (cont)

To display a hashtable that's
saved in a variable, type the
variable name.

$hash

hashtables have Keys and
Values properties.

$hash.keys
$hash.values

You can iterate over the keys in
a hashtable to process the
values in several ways.

foreach ($Key in $hash.Keys) {
 "The value of '$Key' is:
$($hash[$Key])"
}

To add keys and values to a
hashtable, use the following
command format.

$hash["<key>"] = "<value>"
$hash["Time"] = "Now"

You can also add keys and
values to a hashtable using the
Add method of the System.Co‐
llections.Hashtable object.

Add(Key, Value)
$hash.Add("Time", "Now")

PSCustomObjectPSCustomObject

Creating a
PSCustomObject

$myObject = [PSCustomObject]@{
 Name = 'Kevin'
 Language = 'PowerShell'
 State = 'Texas'
}

Converting a
hashtable

$myHashtable = @{
 Name = 'Kevin'
 Language = 'PowerShell'
 State = 'Texas'
}

$myObject = [pscustomobject]$myHashtable

Saving to a file $myObject | ConvertTo-Json -depth 1 | Set-Co‐
ntent -Path $Path
$myObject = Get-Content -Path $Path |
ConvertFrom-Json

Adding properties $myObject | Add-Member -MemberType
NoteProperty -Name 'ID' -Value
'KevinMarquette'
$myObject.ID

Remove
properties

$myObject.psobject.properties.remove('ID')

PSCustomObject (cont)PSCustomObject (cont)

Enumerating
property names

$myObject | Get-Member -MemberType
NoteProperty | Select -ExpandProperty Name

Dynamically
accessing
properties

$myObject.'Name'

Convert PSCust‐
omObject into a
hashtable

$hashtable = @{}
foreach($property in $myobject.psobject.pr‐
operties.name)
{
 $hashtable[$property] = $myObject.$p‐
roperty
}

Testing for
properties

if($null -ne $myObject.ID)
if($myobject.psobject.properties.match('ID').C‐
ount)

FunctionsFunctions

A simple function function Get-Version {
 $PSVersionTable.PSVersion
}

Parameters function Test-MrParameter {
 param (
 $ComputerName
)
 Write-Output $ComputerName
}

By giangpdhgiangpdh
cheatography.com/giangpdh/

Published 19th December, 2022.
Last updated 21st December, 2022.
Page 2 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/giangpdh/
http://www.cheatography.com/giangpdh/cheat-sheets/powershell
http://www.cheatography.com/giangpdh/
https://readable.com

	PowerShell Cheat Sheet - Page 1
	Working with variables
	Types of variables
	Variable substitution in strings
	Arrays
	Hash Tables

	PowerShell Cheat Sheet - Page 2
	Functions
	PSCustomObject

