Cheatography

Start Up - Initialize your project

Create an empty node project npm init .

Make the folder structure as below <see structure below>

Add / register generator folders in <see sample below>

package.json
Add yeoman-generator deps npm i --save yeoman-ge-

nerator

folder structure
generator-goofy
I—package.json
L—generators/
—app/

I—index.js

package.json

{
"name": "generator-goofy",
"version": "1.0.0",
"files": [

"generators/app",

A Generator Class

Import required deps generators = require 'yeoman-g-

enerator'

Extend from generators.Base class GoofyGen extends genera-

tors.Base

Ensure CTOR initializes

yeoman env

constructor : () ->
generators.Base.apply this,
arguments

Add whatever methods you
need

Finally export the class module.exports = GoofyGen

Example
generators = require 'yeoman-generator'
class GoofyGen extends generators.Base
constructor : () ->
generators.Base.apply this, arguments

@log 'Initializing option..."

method1 : () ->
@log 'processing..."

module.exports = GoofyGen

Yeoman Run Priorities

Yeoman Generator Development (CoffeeScript) Cheat Sheet
by Arun N Kumar (gettoarun) via cheatography.com/26194/cs/7280/

Yeoman Run Priorities (cont)

end Called last, cleanup, say good bye, etc

Developers get to control the execution flow and composability,
yeoman implements a Grouped-queue based Run loop and priori-
ties.

Priorities are defined in your code as special prototype method
names. When present they execute it accordingly.

generators.Base.extend({
priorityName: {
method: function () {},
method2: function () {}
}
DF



http://www.cheatography.com/
http://www.cheatography.com/gettoarun/
http://www.cheatography.com/gettoarun/cheat-sheets/yeoman-generator-development-coffeescript

initializing

prompting

config-

uring

default

writing

conflicts

install

Your initialization methods (checking current project
state, getting configs, etc)

Where you prompt users for options (where you'd call
this.prompt())

Saving configurations and configure the project
(creating .editorconfig files and other metadata files)

If the method name doesn't match a priority, it will be
pushed to this group.

Where you write the generator specific files (routes,
controllers, etc)

Where conflicts are handled (used internally)

Where installation are run (npm, bower)

By Arun N Kumar (gettoarun) Not published yet.

cheatography.com/gettoarun/ Last updated 13th May, 2016.

www.arunkumar.io Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com


http://www.cheatography.com/gettoarun/
http://www.arunkumar.io
https://readable.com

	Yeoman Generator Development (CoffeeScript) Cheat Sheet - Page 1
	Start Up - Initialize your project
	A Generator Class
	Yeoman Run Priorities


