
Python Cheat Sheet
by Gaston via cheatography.com/24027/cs/5463/

Identifier classes

__*__ System ​-de ​fined names

_* Module private name, not imported via import *

__* Class- ​private name

Tuple

(obj1, obj2,

...)

tuple literal (paren ​thesis are optional, at least one comma

is required)

(obj1 ,) singleton, tuple with only one object (paren ​thesis are

optional)

() empty tuple

A tuple is an immutable sequence of objects

List

[obj1, obj2, ...] list literal

[obj1] single item list

[] empty list

A list is a mutable sequence of objects

Slices

s[i] Item at index i of sequence s (not a slice)

s[i:j] Items i to j-1 of s

s[i:j:k] every k item starting at index i and not including index j or higher

s[:] " ​s[: ​]" is a copy of seqquence s, while " ​s" is a reference to the

same sequence

A Slice is a part of a sequence

Indexes start at 0 for the first item

Negative indexes start at the end of the sequence (eg. -1 is last element, -

2 second last,...)

Dictio ​naries

{ key1: itm1, key2:

itm2, ... }

Dictionary of items referenced by key

d[key] return item referened by given key

d[key] = x Add (or replaces) given key with attached item x

del d[key] Remove d[key] from d. Raises KeyError if key not

present in d

key in d returns True if key is in dictionary

key not in d returns False if key is in dictionary

d.items() returns a list of key,value pairs

Dictio ​naries (cont)

d.keys() returns list of keys in dictionary

d.values() returns a list of the dictio ​naries values

d.copy() shallow copy of the dictionary (only top level objects are

copies, any object remains is a reference to the " ​old ​"
object)

d.deep ​copy() deep copy of the dictionary

d.get(​key[,

default])

returns d[key] if th ekey is present, or default if not. If

default is not passed, None is returned

d.pop(​key[,

default])

same as get() except that the key,value pair is also

removed from the dictionary

d.popi ​tem() pops an arbitrary (key, value) pair from the dictio ​nary.

d.setd ​efa ​ult ​(
key[,

default])

returns d[key] if it exists, otherwhise does d[key ​]=d ​efault
and returns default as well. default defaults to None

viewitems()

viewkeys()

viewvalues()

returns dictionary view object contining either (key,v ​alue)

pairs, only keys or only values

1) Keys are unique

2) If the key is a string it needs to be quoted

3) for loop "for k in dict" returns the keys, not the item

(Im)mu ​tuable sequences

x in s True if an item of s is equal to x

x not in s False if an item of s is equal to x

len(s) number of items in s

min(s) smallest item of s

max(s) largest item if s

s.index(x) first index of item equal to x in s

s.count(x) number of occurences of x in s

These operations apply to mutable and immutable sequences

Sequence indexes start at 0 (first element), negative indexes start at the

end (inex -1 is last element, -2 second last,...)

s: sequence

x : object ​/item

By Gaston

cheatography.com/gaston/

Not published yet.

Last updated 20th October, 2015.

Page 1 of 2.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

th

http://www.cheatography.com/
http://www.cheatography.com/gaston/
http://www.cheatography.com/gaston/cheat-sheets/python
http://www.cheatography.com/gaston/
https://readability-score.com

Python Cheat Sheet
by Gaston via cheatography.com/24027/cs/5463/

Mutable sequences

s[i] = x replace item i of sequence s by x

s[i:j] = x replace items i to j-1 (slice) by x

s[i:j:k] = x replace each k item of s starting at i and not

including j or higher by x

del <sl ​ice> delete the specified slice from the sequence

s.appe ​nd(x) appends obect x to the end of the sequence s

s.exte ​nd(s2) appends items of sequence s2 to s

s.inse ​rt(i, x) inserts object x before the current item at index i

s.pop(i) Removes item i from the sequence and returns it. If

i is omitted i=-1 is ssumed

s.remo ​ve(x) same as del s[s.in ​dex(x)]

s.reve ​rse() reverse the order of the items in s in place

s.sort([cmp [, key

[, revers ​e]]])

sort elements in place (1)

(1) cmp is optional comparison function with 2 arguments (the items to be

compared) (i.e. func(a,b)) and returning -1 if a<b, 0 if a==b and 1 if a>b

(2) key is an optional function taking one argument (item from the

sequence) and used to extract the actual inform ​ation from that item to be

compared

(3) reverse, if True, causes the sort result to have reverse order

(4) in general specifying key and reverse (if possible) is much faster than

the equivalent cmp function

Classes

class <classname>:(1)

 ​ ​<st ​ati ​c-v ​ar> ​=<v ​alu ​e> (2)

 ​ def __init ​__(​sel ​f,< ​arg ​s>...): (3)

 ​ ​ ​ ​<class constr ​uct ​or>

 ​ ​ ​ ​sel ​f.< ​att ​rib ​ute ​>=< ​val ​ue> (4)

 ​ def method ​(se ​lf, ​<ar ​gs> ​,...): (5)

 ​ ​ ​ ​<method body>

 ​ def __priv ​ate ​Met ​hod ​(self, <ar ​gs>...): (6)

 ​ ​ ​ ​<method body>

(1) Start definition of class

(2) Static variable, same value for all instances and referenced via

<cl ​ass ​nam ​e>.< ​va ​rna ​me> rather than via self

(3) Class constr ​uctor called via <ca ​lss ​nam ​e>() with optional arguments

(4) Attribute local to the instance

(5) Class method defini ​tion. Each and every method in a class has at least

one argument, " ​sel ​f" referring the class instance

(6) private methods are not intended to be used from outside the class

and are marked by two leading unders ​cores

Special class methods

__init ​__(​self[, ...]) Called for any new instance creation in order to

initialize it. Derived classes must call their base class

__init__ explic ​itely via <ba ​sec ​las ​s>._ ​_i ​nit ​__(​sel ​f,...)
where self needs to be explic ​itely passed

__del_ ​_(self) Called when the instance is to be destroyed

__repr ​__(​self) Called by the repr() function to return a string

containing the classes repres ​ent ​ation. Usually used

for debugging. If thsi method is defined and

__str()__ is not, this method is also used for string

conver ​sions

__str_ ​_(self) called by the str() function and by " ​pri ​nt"

__lt__(self,other)

__le__(self,other)

__eq__(self,other)

__ne__(self,other)

__gt__(self,other)

__ge__(self,other)

Rich comparison methods returning True if

self<o ​ther, self<= ​other, self== ​other, self!= ​other.

There is no defined relati ​onship, i.e. x==y True doe

not imply that x!=y is False

By Gaston

cheatography.com/gaston/

Not published yet.

Last updated 20th October, 2015.

Page 2 of 2.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

th

http://www.cheatography.com/
http://www.cheatography.com/gaston/
http://www.cheatography.com/gaston/cheat-sheets/python
http://www.cheatography.com/gaston/
https://readability-score.com

	Python Cheat Sheet - Page 1
	Identifier classes
	Tuple
	List
	Slices
	(Im)mu­tuable sequences
	Dictio­naries

	Python Cheat Sheet - Page 2
	Mutable sequences
	Special class methods
	Classes

