
Erlang Binaries Cheat Sheet
by Magnus (Fylke) via cheatography.com/93081/cs/20609/

OverviewOverview

Erlang can match binaries just as any list of things. <<E1, E2, E3>> = Bin divides the binary Bin into three elements of type integer of
one byte each. This means that Bin has to be 24 bits long, or we get a badmatch. You can also make partial matches, in a [Head | Tail]
fashion, by putting /bitstring on the last element, like so: <<E1, E2, E3/bitstring>> = Bin. This is a type modifiertype modifier and tells
Erlang that there are two 8-bit elements, in E1 and E2 respectively, and then an undetermined amount of bits stored in E3..

Type ModifiersType Modifiers

TypeType Size inSize in
bitsbits

RemarksRemarks

integer As
many as
it takes

Default size is 8 bits

float 6464|32|16 Need to specify length if other than
default: <<A:16/float>>

binary|bytes 8 per
chunk

Anything matched must be of size
evenly divisible by 8 (this is default)

bitstring|bits 1 per
chunk

Will always match, use as Tail for a list

utf8|utf16|utf32 8-32,
16-32,
and 32

<<"abc"/utf8>> is the same as
<<$a/utf8, $b/utf8, $c/utf8
>>

signed|unsigned N/A Default is unsigned

big|little|native N/A Endianness - native is resolved at
load time to whatever the CPU uses

unit:IntLiteral N/A Define a custom unit of length 1..256

ExamplesExamples

ExpressionExpression ResultResult

<<97, 98, 99>> <<"abc">> (turn off with
shell:strings(fa
lse))

<<A:2/unit:6, B:1/unit:4>> = <<7,
42>>

A = 114 B = 10

<<A:16/float>> = <<1, 17>> 1.62720680236816
4e-5

<<A/signed>> = <<255>> -1

<<A:16/big>> = <<255, 0>> 65280

<<A:16/little>> = <<255, 0>> 255

<<"pöpcörn"/utf8>> How Erlang handles
unicode

When constructing a binary, if the size of an integer N is too large to
fit inside the given segment, the most significant bits are silently
discarded and only the N least significant bits kept.

SegmentsSegments

Binary Comprehension ExampleBinary Comprehension Example

Just like with lists, there is a notation for binary comprehension. Below is an example of how to use this to
convert a 32 bit integer into a hex representation:
int_as_hex(Int) ->
 IntAsBin = <<Int:32>>,
 "0x" ++ lists:flatten([byte_to_hex(<<Byte>>) || <<Byte:8>
> <= IntAsBin]).
byte_to_hex(<<Nibble1:4, Nibble2:4>>) ->
 [integer_to_list(Nibble1, 16), integer_to_list(Nibble2, 16)
)].

You can mix list- and binary comprehension: if the generator is a list,
use <-, if it's a binary, use <=. If you want the result to be a binary,
use <<>>, if you want a list, use [] around the expression.

TroubleshootingTroubleshooting

Use the Erlang shell to trial and error you way to a correct expression. A useful tool for
understanding why your binaries are badmatching is bit_size:
bit_size(<<1/integer>>). => 8 bit_size(<<<<1:1, 0:1>>/bit‐
string>>). => 2
bit_size(<<1.0/float>>). => 64 bit_size(<<<<1, 2>>/binary
>>). => 16
A related one is byte_size:
MinBytesToEncodeNumber = byte_size(binary:encode_unsign
ed(Number)).

http://www.cheatography.com/
http://www.cheatography.com/fylke/
http://www.cheatography.com/fylke/cheat-sheets/erlang-binaries

Each segment in a binary has the following general syntax: Value:S
ize/TypeSpecifierList. The Size and TypeSpecifier can
be omitted.
Value is either a literal or a variable, Size is multiplied by the unit in
TypeSpecifierList, and can be any expression that
evaluates to an integer . Think of 'Size' as the number of items of
the type in the 'TypeSpecifierList'
Contrived example:Contrived example: <<X:4/little-signed-integer‐
-unit:8>> has a total size of 4*8 = 32 bits, and it contains a
signed integer in little endian byte order.

 Mostly true, see Bit Syntax Expressions in Erlang documentation
for complete picture.

By MagnusMagnus (Fylke)
cheatography.com/fylke/

Published 25th September, 2019.
Last updated 8th March, 2023.
Page 2 of 2.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

1

1

http://www.cheatography.com/fylke/
https://apollopad.com

	Erlang Binaries Cheat Sheet - Page 1
	Overview
	Type Modifiers
	Binary Comprehension Example
	Troubleshooting
	Examples
	Segments

