
Closed-source Debugging with GDB Cheat Sheet
by fristle via cheatography.com/5574/cs/1012/

GDB: Launching

Launching GDB

gdb programfile Start GDB ready to
launch and debug
progr amfile

gdb --args

program arg1

arg2

Start GDB as above
but supplying
command line
arguments to the
target process.

gdb -p pid Attach GDB to a
running target
process.

Selecting the Start of Debugg ing

gdb$ start Run the debuggee
and break at main()
(if it exists).

gdb$ attach pid Attach GDB to a
running target
process.

(gdb) attach

--waitfor

proce ss- name

(Mac OS X only)
Wait for a process to
launch and immedi ‐
ately attach to it.

Adding a shim

gdb$ set exec-

w rapper env
'LD_PR ELO ‐
AD= li bfo o.so'

The dynamic library
file libfo o.so will be
loaded into the
address space of the
debuggee.

Logging

gdb$ set

logging file

filen ame

The default logfile is
gdb.txt but you can
use this to change it.

GDB: Launching (cont)

gdb$ set

logging

overwrite

off

The default is on, which
overwrites the existing
log file.

gdb$ set

logging on

Turns on logging.

gdb$ echo

comme nt\n

With logging on, this will
add a comment to the
logfile.

GDB: Execution

Displaying the Call Stack

gdb$ bt Show the list of stack frames
(BackT race).

gdb$ bt

full

Show the list of stack frames
with the local variables of each.

gdb$

info

frame

Show saved stack pointer, call
address, etc. for the selected
stack frame.

gdb$

frame

number

Select stack frame number
number (and crashed GDB
6.3.50 on OS X).

Controlling Execut ion

si

[count]

Step-into (one or count instru ‐
ction forward).

ni

[count]

Step-over (one or count instru ‐
ction, stepping over function
calls).

return

[value]

Immedi ately return from the
current function, optionally
setting the return value.

finish Stop after finishing execution of
the current function.

GDB: Execution (cont)

continue Any time GDB is stopped, this
will continue normal
execution.

GDB: Enviro nment

gdb$ show env

Display the debuggee's current enviro ‐
nment variables.

gdb$ set env varna me=v alue

Set an enviro nment variable.

gdb$ unset env varname

Delete an enviro nment variable.

gdb$ show args

Display the comman d-line arguments of the
debuggee process.

gdb$ set args arg1 arg2

Set the comman d-line arguments to the
debuggee process.

gdb$ shell command

Run shell commands (useful commands
may include "ps -e", etc.)

gdb$ pwd | cd

These two commands can can show or
change the working directory of GDB

(useful for logging, etc.).

GDB: Breakp oints

Managing Breakp oints

gdb$ set breakpoint pending on

Bypasses the warning about breakp oints in
modules that aren't loaded yet.

gdb$ break funct ion

Sets a breakpoint at function if ("pe ndi ng"
off) or when ("pe nding on") a symbol by

that name exists.

By fristle
cheatography.com/fristle/

Published 2nd May, 2013.
Last updated 12th May, 2016.
Page 1 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/fristle/
http://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb
http://www.cheatography.com/fristle/
https://readable.com

Closed-source Debugging with GDB Cheat Sheet
by fristle via cheatography.com/5574/cs/1012/

GDB: Breakp oints (cont)

gdb$ break *0x000 01234

Sets a breakpoint at address 0x0000 1234.

gdb$ break 0x000 01234 if symbo ‐
l= =s ome value*

This is an example of the condit ional
breakpoint syntax.

gdb$ catch syscall name

Stop when the syscall name is called. Omit
name to stop on every syscall. Instead of
name, you can also specify a syscall by

number.

gdb$ catch load

(not in Mac OS X) Stop when the debuggee
loads any dynamic library. Also: catch

unload.

gdb$ info break

List all breakp oints and watchp oints.

gdb$ clear [brea kpo int id]

Deletes one or all existing breakp oints.
Without this cheat sheet, the user would be

forced to guess what is being cleared.

gdb$ disable [brea kpo int id]

Disables one or all breakp oints.

Managing Watchp oints (Data Breakp oin ‐
ts)

gdb$ watch *0x123 45678 [mask
0xffff ff00]

Break on any change to the 24 most signif ‐
icant bits of a 32-bit value at address

0x1234 5678.

gdb$ awatch *0x123 45678

Like watch, but also stops on any write or
read accesses to the given address.

gdb$ rwatch *0x123 45678

Like watch, but only stops on read
accesses.

GDB: Concur rency

Multithreaded Debugg ing

gdb$ info threads

List the threads of the target process.

gdb$ thread threa dID

Attach GDB to the thread threa dID.

gdb$ set non-stop on

Only the debugged thread is halted in GDB,
the rest continue to run non-stop (unless

they are blocking on the thread being
debugged).

gdb$ set scheduler-locking on

Only the debugged thread will run when the
debuggee is resumed.

gdb$ set schedu ler -lo cking step

Only the debugged thread will step when
being step-d ebu gged.

gdb$ show schedu ler -lo cking

Display the current setting value.

Multiprocess Debugg ing

gdb$ set follow -fo rk-mode child

GDB will detach at a fork() and attach to the
new process.

gdb$ set follow -fo rk-mode parent

(Default) GDB will not detach at a fork().

gdb$ show follow -fo rk- mode

Display the current setting value.

gdb$ set follow -ex ec-mode new

GDB will detach at an exec() and attach to
the new process.

gdb$ set follow -ex ec-mode same

(Default) GDB will not detach at an exec().

gdb$ show follow -ex ec- mode

Display the current setting value.

gdb$ set detach -on -fork off

GDB: Concur rency (cont)

GDB will not detach at a fork() and will also
attach to the child process (both will be

debugged).

gdb$ show detach -on -fork

Display the current setting value.

gdb$ info inferiors

List all processes under GDB's control. (On
Mac OS X: info files)

GDB: Memory

Memory Images

gdb program -c dumpf ile

Debug program using a memory dump file,
image file.

gdb$ generate-core-file

(not in Mac OS X) Dump the debuggee
process memory to disk.

Reading Disass embly and Memory

gdb$ set disass emb ly- flavor
intel

Use the modern syntax for x86-64
assembly. This is not the default.

gdb$ set disass emb le- nex t-line
on

Disassemble the next instru ction every time
GDB stops. You want to turn this on.

gdb$ x/4i 0x0000 1234

Disassemble (eXamine) the first 4 instru ‐
ctions at address 0x0000 1234.

gdb$ x/32i $rip

Disassemble the first 32 instru ctions
starting at the current instru ction ($RIP on

x86-64).

gdb$ x/32i $rip-16

Same command, but attempting to disass ‐
emble both forward and backward from the

current instru ction.

gdb$ info address symbo lname

Display the address in memory of a given
symbol, specified by name.

By fristle
cheatography.com/fristle/

Published 2nd May, 2013.
Last updated 12th May, 2016.
Page 2 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/fristle/
http://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb
http://www.cheatography.com/fristle/
https://readable.com

Closed-source Debugging with GDB Cheat Sheet
by fristle via cheatography.com/5574/cs/1012/

GDB: Memory (cont)

gdb$ info symbol 0x0000 1234

Displays the symbol name (if any),
executable segment, and executable

module associated with the given address.

gdb$ x/1s 0x0000 1234

Display one null-t erm inated string at
address 0x0000 1234.

gdb$ x/8xb 0x0000 1234

Display 8 heXade cimal Bytes of memory
starting at address 0x0000 1234.

gdb$ info registers

Display the value of the regular CPU
registers.

gdb$ info all-re gis ters

Display the value of all CPU registers
including floati ng- point and vector registers.

Does not include special Machine Specific
Registers (MSRs).

gdb$ find start _ad dress, dista ‐

nce, value [, anoth er_ value,

...]

(not in Mac OS X) Search memory for a
value, given a starting point and a search

distan ce/ offset.

gdb$ info shared

Display info about all of the executable
modules of the debuggee (name, load

address, file path, etc.).

gdb$ info functions

Display all of the function symbols available
and their associated addresses.

gdb$ info variables

Display all of the variable symbols available
and their associated addresses.

GDB: Advanced

Anti-Anti Debugg ing

gdb$ handle signal [keyw ord s...]

(Untested) might bypass except ion -based
anti-d ebu gging

gdb$ catch syscall ptrace

(Untested) Use this breakpoint to return 0
(set $rax = 0; continue), should bypass

ptrace() checking by the debuggee.

By fristle
cheatography.com/fristle/

Published 2nd May, 2013.
Last updated 12th May, 2016.
Page 3 of 3.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/fristle/
http://www.cheatography.com/fristle/cheat-sheets/closed-source-debugging-with-gdb
http://www.cheatography.com/fristle/
https://readable.com

	Closed-source Debugging with GDB Cheat Sheet - Page 1
	GDB: Launching
	GDB: Environment
	GDB: Execution
	GDB: Breakpoints

	Closed-source Debugging with GDB Cheat Sheet - Page 2
	GDB: Concurrency
	GDB: Memory

	Closed-source Debugging with GDB Cheat Sheet - Page 3
	GDB: Advanced

