

Expanding Grouping Symbols

By foxxer

cheatography.com/foxxer/

Cancelling Terms

If numerator and denominator have common
If numerator and denominator have
factors, then you can cancel to simplify.
Take for example $\frac{70}{10}$. This is the same as $\frac{7 \times 10}{10}$,
Take for example $\frac{70}{100}$. This is the same as $\frac{7 \times 10}{10 \times 10}$, since there
s a common factor on the top and bottom we could 'cancel' them and write $\frac{7}{10}$, $\frac{70}{100}=\frac{70 \div 10}{100 \div 10}=\frac{7}{10}$
$\begin{aligned} & \text { EXAMPLE } \quad \frac{2 x+12 y}{24 x} & =\frac{(2 x+12 y) \div 2}{24 x \div 2} \\ \text { RULE } & & =\frac{x+6 y}{12 x}\end{aligned}$
$(a+b) \div c=a \div c+b \div c$ or equivalently $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$.
EXAMPLES

Algebra

Published 4th August, 2018.
Last updated 4th August, 2018.
Page 1 of 2.

Binomial Products

Binomial Products are expressions which involve multiplying two term expressions by each other. USE FOIL METHOD.
If both binomial terms are the same
for example $(2 x+y)(2 x+y)$ we may write it as ($2 x$
$+y)^{2}$
We may remember the formula for these expressions as:
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
We can now simplify an example such as
$(2 x+2 y)^{2}+(x-2 y)^{2}=4 x^{2}+8 x y+4 y^{2}+x^{2}$
$-4 x y+4 y^{2}$
$=5 x^{2}+4 x y+8 y^{2}$
Sum Times The Difference
We should notice that when we expand an expression such as $(3 x+2 y)(3 x-2 y)$ we get a special result.
$(3 x+2 y)(3 x-2 y)=9 x^{2}-6 x y+6 x y-4 y^{2}$
$=9 x^{2}-4 y$
So We Have A Special Rule
$(a+b)(a-b)=a^{2}-b^{2}$

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

Coefficient first then variables follow

Published 4th August, 2018.

Last updated 4th August, 2018.
Page 2 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

