Cheatography

Mole Calculations Cheat Sheet by fongrsy via cheatography.com/65383/cs/16384/

Conventions and Rules

* **Molar mass** is the mass of one mole of atoms in a substance.

* 1 mole of any gas is 24dm³ at r.t.p.

* **Avogadro's Constant** is the number of particles in one mole of any substance. The number is 6×10^{23} .

* *Relative Atomic Mass* is the mass of one atom of an element compared to 1/12 of the mass of one carbon-12 atom.

* **Relative Molecular Mass** is the mass of one molecule of an element compared to 1/12 of the mass of one carbon-12 atom.

* **Relative Formula Mass** is the mass of one formula unit of an ionic compound. It is the sum of the Ar of all the ions in the formula unit.

* $1000 \text{ cm}^3 = 1 \text{ dm}^3$

Formula Triangles				
Тор	Bottom 1	Bottom 2		
No. of Particles	No. of Moles	Avogadro's No.		
Mass in Grams	No. of Moles	Molar Mass in g/mol		
Volume of Gas in dm ³	No. of Moles	24dm ³		
Mass in g	Volume in dm ³	Mass Concentration in g/dm ³		
No. of Moles	Volume in dm ³	Molar Concentration in mol/dm ³		

* To find top, multiply bottom values. To find bottom, take top divided by other bottom value.

1. No. of Particles // Moles // Avogadro's No.

2. Mass // Moles // Molar Mass

3. Volume // Moles // 24dm³

- 4. Mass // Volume // Mass Concentration
- 5. Moles // Volume // Molar Concentration

By **fongrsy**

cheatography.com/fongrsy/

Concentration

- * The amount of solute dissolved in a unit volume of the solution.
- * Usually in g/dm³ or mol/dm³.
- * Mol/dm³ is also called Molarity.
- $* 1M = 1 \text{ mol/dm}^3$

Molecular Formula & Empirical Formula					
Value	Element A	Element B			
Mass in Grams	Х	х			
Molar Mass	х	х			
Moles	Х	х			
Mole Ratio	Х	х			

1. Given % Composition, find masses of both substances in 100g. If 70% is A and 30% is B, then there is 70g of A and 30g of B in 100g of AB.

2. Find molar mass using periodic table.
3. Find no. of moles by multiplying mass and molar mass.

4. Divide all sides by the smallest number and round off to the nearest whole number to get mole ratio.

5. Molecular Formula is always a multiple of the Empirical Formula.

% Purity and % Yield

% Purity = Mass of Pure Substance / Total Mass x 100%

% Yield = Actual Mass / Theoretical Mass x 100%

Limiting Reagents & Reactants in Excess				
х	No. of Available Moles	VS	No. of Moles Needed	
Limiting Reagents	No. of Available Moles	<	No. of Moles Needed	
Reactants in Excess	No. of Available Moles	>	No. of Moles Needed	

Published 18th July, 2018. Last updated 21st July, 2018. Page 1 of 1.

How to Find Limiting Reagents

A + 2B 🗲 2AB

- 1. Find no. of available moles for A.
- 2. Find no. of available moles for B.
- 3. Find no. of moles needed for A/B.

E.g. Moles needed for A = Available moles for B/2

(Refer to mole ratio)

If moles available is < moles needed, then that reactant is the limiting reagent.

The concept of limiting reagents is the available moles for reaction vs the needed moles for reaction.

Mole Calculations				
Given			Find	
Mass of	Moles of	Moles of	Mass of	
A	A	B	B	
Vol. of A	Moles of A	Moles of B	Vol. of B	
Mass of	Moles of	Moles of	Vol. of B	
A	A	B		
Vol. of A	Moles of	Moles of	Mass of	
	A	B	B	

Refer to mole ratio when converting Moles of A to Moles of B.

1 mole of any gas is 24dm³ at R.T.P.

Acids & Bases

Metal + Acid 🗲 Salt + Hydrogen Gas
Metal Carbonate + Acid 🔶 Salt + Water +
Carbon Dioxide
Metal Oxide + Acid 🔶 Salt + Water
Metal Hydroxide + Acid 🗲 Salt + Water
Base + Acid > Salt + Water (Neutralisation)
Alkali + Acid 🗲 Salt + Water
Alkali + Ammonium Salt 🔶 Salt + Water +
Ammonia Gas
Alkali + Salt 🗲 Metal Hydroxide + Salt

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com