\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{fongrsy} \pdfinfo{ /Title (electrolysis.pdf) /Creator (Cheatography) /Author (fongrsy) /Subject (Electrolysis Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{0296E0} \definecolor{LightBackground}{HTML}{EFF8FD} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Electrolysis Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{fongrsy} via \textcolor{DarkBackground}{\uline{cheatography.com/65383/cs/19663/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}fongrsy \\ \uline{cheatography.com/fongrsy} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 20th May, 2019.\\ Updated 20th May, 2019.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Definitions}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Electrolysis \{\{fa-arrow-right\}\} The use of electricity to break down or decompose a compound (usually an ionic compound in molten or aqueous state). \newline % Row Count 3 (+ 3) Electrolysis takes place in an {\bf{electrolytic cell}} made of batteries, electrodes (an anode and a cathode) and an electrolyte. \newline % Row Count 6 (+ 3) Anode \{\{fa-arrow-right\}\} attracts anions \newline % Row Count 7 (+ 1) Cathode \{\{fa-arrow-right\}\} attracts cations \newline % Row Count 8 (+ 1) Electrolyte \{\{fa-arrow-right\}\} The compound to be electrolysed.% Row Count 10 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Main Concepts}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The electrolyte is the compound that will be broken down. \newline % Row Count 2 (+ 2) Cations are attracted to the cathode, where they gain electrons. \newline % Row Count 4 (+ 2) Anions are attracted to the anode, where they lose electrons. \newline % Row Count 6 (+ 2) The process of losing a charge (whether it's positive or negative) is called {\bf{discharge}}. \newline % Row Count 8 (+ 2) The transfer of electrons from the cathode to the cation / anion to the anode discharges the ions, hence they do not recombine as they are now neutral.% Row Count 12 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Ease of Ion Discharge}} \tn % Row 0 \SetRowColor{LightBackground} Hardest to Discharge & Hardest to Discharge \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} K\textasciicircum{}+\textasciicircum{} & SO4\textasciicircum{}2-\textasciicircum{} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Na\textasciicircum{}+\textasciicircum{} & NO3\textasciicircum{}-\textasciicircum{} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} Ca\textasciicircum{}2+\textasciicircum{} & F\textasciicircum{}-\textasciicircum{} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} Mg\textasciicircum{}2+\textasciicircum{} & Cl\textasciicircum{}-\textasciicircum{} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} Zn\textasciicircum{}2+\textasciicircum{} & Br\textasciicircum{}-\textasciicircum{} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} Fe\textasciicircum{}2+\textasciicircum{} & I\textasciicircum{}-\textasciicircum{} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} Pb\textasciicircum{}2+\textasciicircum{} & OH\textasciicircum{}-\textasciicircum{} \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{H\textasciicircum{}+\textasciicircum{}} \tn % Row Count 9 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Cu\textasciicircum{}2+\textasciicircum{}} \tn % Row Count 10 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Ag\textasciicircum{}+\textasciicircum{}} \tn % Row Count 11 (+ 1) % Row 11 \SetRowColor{white} Easiest to Discharge & Easiest to Discharge \tn % Row Count 12 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{SO4\textasciicircum{}2-\textasciicircum{} and NO3\textasciicircum{}-\textasciicircum{} are not discharged and remain in solutions} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electrolysis - Change in Electrolyte (NaCl)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1) Molten NaCl \newline % Row Count 1 (+ 1) Ions Present - Na\textasciicircum{}+\textasciicircum{}, Cl\textasciicircum{}-\textasciicircum{} \newline % Row Count 2 (+ 1) At anode: 2Cl\textasciicircum{}-\textasciicircum{} (l) \{\{fa-arrow-right\}\} Cl2 (g) + 2e\textasciicircum{}-\textasciicircum{} \newline % Row Count 4 (+ 2) At cathode: Na\textasciicircum{}+\textasciicircum{} (l) + e\textasciicircum{}-\textasciicircum{} \{\{fa-arrow-right\}\} Na (l) \newline % Row Count 6 (+ 2) Cathode: Silvery globules of sodium \newline % Row Count 7 (+ 1) Anode: Yellowish-green chlorine gas evolved \newline % Row Count 8 (+ 1) 2) Dilute NaCl Solution \newline % Row Count 9 (+ 1) Ions Present: H\textasciicircum{}+\textasciicircum{}, Na\textasciicircum{}+\textasciicircum{}, OH\textasciicircum{}-\textasciicircum{}, Cl\textasciicircum{}-\textasciicircum{} \newline % Row Count 10 (+ 1) At anode: 4OH\textasciicircum{}-\textasciicircum{} (aq) \{\{fa-arrow-right\}\} 2H2O (l) + O2 + 4e\textasciicircum{}-\textasciicircum{} \newline % Row Count 12 (+ 2) At cathode: 2H\textasciicircum{}+\textasciicircum{} (aq) + 2e\textasciicircum{}-\textasciicircum{} \{\{fa-arrow-right\}\} H2 (g) \newline % Row Count 14 (+ 2) Cathode: Hydrogen gas released \newline % Row Count 15 (+ 1) Anode: Oxygen gas is released \newline % Row Count 16 (+ 1) 3) Concentrated NaCl Solution \newline % Row Count 17 (+ 1) Ions present: H\textasciicircum{}+\textasciicircum{}, Na\textasciicircum{}+\textasciicircum{}, OH\textasciicircum{}-\textasciicircum{}, Cl\textasciicircum{}-\textasciicircum{} \newline % Row Count 18 (+ 1) At anode: 2Cl\textasciicircum{}-\textasciicircum{} (aq) \{\{fa-arrow-right\}\} Cl2 (g) + 2e\textasciicircum{}-\textasciicircum{} \newline % Row Count 20 (+ 2) At cathode: 2H\textasciicircum{}+\textasciicircum{} (aq) + 2e\textasciicircum{}-\textasciicircum{} \{\{fa-arrow-right\}\} H2 (g) \newline % Row Count 22 (+ 2) Cathode: Hydrogen gas released \newline % Row Count 23 (+ 1) Anode: Yellowish-green chlorine gas released% Row Count 24 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{For solutions with more than 1 cation/anion, selective discharge will take place. \newline \newline If you forget the polarity of the electrodes, don't {\bf{PANIC}}. \newline {\bf{P}}ositive is {\bf{A}}node, {\bf{N}}egative {\bf{I}}s {\bf{C}}athode.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Selective Discharge}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{At the cathode, cation discharge is {\bf{ONLY}} affected by the metal reactivity series. The less reactive the metal, the easier it is to discharge, hence it will be discharged in preference to more reactive metals. \newline % Row Count 5 (+ 5) Inert Cathodes: Cations will be discharged \newline % Row Count 6 (+ 1) Reactive Cathodes: If anode is made of the same metal, a layer of metal coating will form on the cathode. \newline % Row Count 9 (+ 3) At the anode, anion discharge is affected by the concentration of the ion. Halogen ions (Cl\textasciicircum{}-\textasciicircum{} / Br\textasciicircum{}-\textasciicircum{} / I\textasciicircum{}-\textasciicircum{}) are discharged in preference to OH\textasciicircum{}-\textasciicircum{} ions in concentrated solutions. \newline % Row Count 13 (+ 4) Sulfate ions and nitrate ions are {\bf{NOT}} discharged and will remain in solutions. \newline % Row Count 15 (+ 2) Inert Anodes: Anions will be discharged \newline % Row Count 16 (+ 1) Reactive Anodes: Will dissolve and oxidise to form cations% Row Count 18 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Simple Cell}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Simple cells convert chemical potential energy into electrical energy. Electrolysis requires energy to occur while simple cells generate energy (spontaneous reaction). \newline % Row Count 4 (+ 4) Chemical Potential Energy \{\{fa-arrow-right\}\} Electrical Energy \newline % Row Count 6 (+ 2) For simple cells, the anode is negative while the cathode is positive. The electrodes are made of different reactive metals at different positions in the metal reactivity series. The pair of metals with the greatest p.d. is the pair that is the furthest apart in the metal reactivity series. \newline % Row Count 12 (+ 6) The more reactive metal (higher in electrochemical series) will become the negative terminal. The atom of the reactive metal will lose electron(s) to form positive ions and dissolve into the solution. Oxidation takes place. \newline % Row Count 17 (+ 5) The electrons lost by the more reactive metal are then moved to the other metal plate through the wire. As a result, current is produced (there is a potential difference) and the ammeter / voltmeter deflects. \newline % Row Count 22 (+ 5) The less reactive metal (lower in electrochemical series) will become the positive terminal. At the positive terminal, the positive ions in the solution (electrolyte) will gain electrons (from the negative terminal) and be discharged. \newline % Row Count 27 (+ 5) If the positive ions are less reactive than hydrogen, a metal coating will be formed at the positive terminal. \newline % Row Count 30 (+ 3) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Simple Cell (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{If the positive ions are more reactive than hydrogen, effervescence (hydrogen gas) is formed at the positive terminal.% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Uses of Electrolysis}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1) Electrolytic Purification \newline % Row Count 1 (+ 1) Metals can be purified by using an electrolytic process. To purify the metal, a piece of pure metal (e.g. copper) is placed as the negative cathode, and the impure metal is placed as the positive anode. When the electrical circuit is closed, only the pure metal would dissolve from the anode (impure metal) to form metal ions, which are attracted to the cathode where they are deposited as the pure metal. \newline % Row Count 10 (+ 9) 2) Electroplating \newline % Row Count 11 (+ 1) Electroplating is the process of depositing a layer of metal on another substance using electrolysis. Uses of electroplating include decorative finish, as well as to prevent rusting. The electrolyte used contains the cation of the metal to be plated. The anode is the metal to be used as coating, and the cathode is the object to be plated. \newline % Row Count 18 (+ 7) 3) Batteries \newline % Row Count 19 (+ 1) Batteries can be made from simple cells. A simple cell is a device that converts chemical energy into electrical energy. It is also known as an electric cell. It is made by placing two different metals in contact with an electrolyte. The metals act as electrodes for the simple cell.% Row Count 25 (+ 6) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}