\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{fongrsy} \pdfinfo{ /Title (acids-bases-and-alkalis.pdf) /Creator (Cheatography) /Author (fongrsy) /Subject (Acids, Bases and Alkalis Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{800000} \definecolor{LightBackground}{HTML}{FBF7F7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Acids, Bases and Alkalis Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{fongrsy} via \textcolor{DarkBackground}{\uline{cheatography.com/65383/cs/16397/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}fongrsy \\ \uline{cheatography.com/fongrsy} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 21st July, 2018.\\ Updated 26th July, 2018.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{p{0.74655 cm} x{4.23045 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Definitions}} \tn % Row 0 \SetRowColor{LightBackground} Acids & Acids are compounds which ionise/dissociate in water to produce hydrogen ions (H\textasciicircum{}+\textasciicircum{}). \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Bases & Bases are compounds that are metal oxides or hydroxides that react with an acid to give a salt and water only. \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \seqsplit{Alkalis} & Alkalis are bases that ionise/dissociate in water to produce hydroxide ions (OH\textasciicircum{}-\textasciicircum{}). \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.04425 cm} x{1.00248 cm} x{1.12779 cm} x{1.00248 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Examples of Acids \& Bases}} \tn % Row 0 \SetRowColor{LightBackground} Acid & Chemical Formula & Base & Chemical Formula \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{Hydrochloric} Acid & HCl & Magnesium Oxide & MgO \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Sulfuric Acid & H2SO4 & Copper (II) Oxide & CuO \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Nitric Acid & HNO3 & Sodium Hydroxide & NaOH \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} Citric Acid & C6H8O7 & Potassium Hydroxide & KOH \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} Ethanoic Acid & CH3CO2H & Calcium Hydroxide & Ca(OH)2 \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} Lactic Acid & C3H6O3 & Aqueous Ammonia & NH3 \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}----} \SetRowColor{LightBackground} \mymulticolumn{4}{x{5.377cm}}{Acids 1 to 3 are known as mineral / inorganic acids while Acids 4 to 6 are known as organic acids. \newline \newline Bases 1 \& 2 are insoluble bases while Bases 3 to 6 are soluble bases / alkalis.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Metal Reactivity Series}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/fongrsy_1532572042_metal reactivity series.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Types of Reactions}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Metal + Acid \{\{fa-arrow-right\}\} Salt + Hydrogen Gas \newline % Row Count 2 (+ 2) Metal Carbonate + Acid \{\{fa-arrow-right\}\} Salt + Water + Carbon Dioxide \newline % Row Count 4 (+ 2) Metal Oxide + Acid \{\{fa-arrow-right\}\} Salt + Water \newline % Row Count 6 (+ 2) Metal Hydroxide + Acid \{\{fa-arrow-right\}\} Salt + Water \newline % Row Count 8 (+ 2) Base + Acid \{\{fa-arrow-right\}\} Salt + Water (Neutralisation) \newline % Row Count 10 (+ 2) Alkali + Acid \{\{fa-arrow-right\}\} Salt + Water (Neutralisation) \newline % Row Count 12 (+ 2) Alkali + Ammonium Salt \{\{fa-arrow-right\}\} Salt + Water + Ammonia Gas \newline % Row Count 14 (+ 2) Alkali + Salt \{\{fa-arrow-right\}\} Metal Hydroxide + Salt% Row Count 16 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Tests for Gases: \newline Hydrogen Gas - Extinguishes a lighted splinter with a 'pop' sound. \newline Carbon Dioxide Gas - Released as effervescence. Reacts with limewater to form a white precipitate. \newline Ammonia Gas - Pungent odour. Turns red litmus paper blue. \newline \newline Notes: \newline Base / Alkali + Acid is an exothermic reaction. \newline Pb (s) + H2SO4 / HCl \{\{fa-arrow-right\}\} PbSO4 / PbCl2 + H2 \newline Lead reacts slowly then stops. Salt forms on the surface of the lead. The salt formed is insoluble.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{pH Scale}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Acidic solutions have pH values \textless{} 7. \newline % Row Count 1 (+ 1) They contain {\bf{more}} H\textasciicircum{}+\textasciicircum{} ions and {\bf{fewer}} OH\textasciicircum{}-\textasciicircum{} ions. \newline % Row Count 3 (+ 2) Neutral solutions have pH values = 7. \newline % Row Count 4 (+ 1) They contain {\bf{equal amounts}} of H\textasciicircum{}+\textasciicircum{} ions and OH\textasciicircum{}-\textasciicircum{} ions. \newline % Row Count 6 (+ 2) Alkaline solutions have pH values \textgreater{} 7. \newline % Row Count 7 (+ 1) They contain {\bf{more}} OH\textasciicircum{}-\textasciicircum{} ions and {\bf{fewer}} H\textasciicircum{}+\textasciicircum{} ions.% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ionic Equations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. Write a balanced chemical equation with state symbols.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. Check which reactants and products can form ions in water. (Aqueous)} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. Split up these reactants and products into their respective ions.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{4. Check for ions that appear in both LHS \& RHS of the equation, these are spectator ions that can be removed from the equation.} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{5. For those reactants and products which are unable to form ions, do not split the compounds.} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{6. What is left will be the net ionic equation. The coefficients must be in the lowest ratio.} \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.86963 cm} x{1.32733 cm} x{2.38004 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Polyatomic Ions}} \tn % Row 0 \SetRowColor{LightBackground} Charge & Name & Chemical Formula \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 1+ & Ammonium & NH4\textasciicircum{}+\textasciicircum{} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} & Hydronium & H3O\textasciicircum{}+\textasciicircum{} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} 1- & Nitrate & NO3\textasciicircum{}-\textasciicircum{} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} & Hydroxide & OH\textasciicircum{}-\textasciicircum{} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} & Ethanoate & CH3COO\textasciicircum{}-\textasciicircum{} \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} 2- & Carbonate & CO3\textasciicircum{}2-\textasciicircum{} \tn % Row Count 7 (+ 1) % Row 7 \SetRowColor{white} & Sulfate & SO4\textasciicircum{}2-\textasciicircum{} \tn % Row Count 8 (+ 1) % Row 8 \SetRowColor{LightBackground} 3- & Phosphate & PO4\textasciicircum{}3-\textasciicircum{} \tn % Row Count 9 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}---} \SetRowColor{LightBackground} \mymulticolumn{3}{x{5.377cm}}{Notes: \newline Silver ion: Ag\textasciicircum{}+\textasciicircum{} \newline Zinc ion: Zn\textasciicircum{}2+\textasciicircum{}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Properties of Acids}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1. Acids are corrosive. \newline % Row Count 1 (+ 1) 2. Acids have a sour taste. \newline % Row Count 2 (+ 1) 3. Acidic solutions conduct electricity. (Electrolytes) \newline % Row Count 4 (+ 2) 4. Acids change the colour of indicators. \newline % Row Count 5 (+ 1) Litmus Paper: Blue to Red \newline % Row Count 6 (+ 1) Methyl Orange Solution: Orange to Red \newline % Row Count 7 (+ 1) Universal Indicator Paper: Orange to Red \newline % Row Count 8 (+ 1) Universal Indicator Solution: Green to Red% Row Count 9 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Properties of Alkalis}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1. Alkalis have a soapy feeling and a bitter taste. \newline % Row Count 2 (+ 2) 2. Alkaline solutions conduct electricity. (Electrolytes) \newline % Row Count 4 (+ 2) 3. Alkalis change the colour of indicators. \newline % Row Count 5 (+ 1) Litmus Paper: Red to Blue \newline % Row Count 6 (+ 1) Methyl Orange Solution: Orange to Yellow \newline % Row Count 7 (+ 1) Universal Indicator Paper: Orange to Violet \newline % Row Count 8 (+ 1) Universal Indicator Solution: Green to Violet% Row Count 9 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Balancing Chemical Equations}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Step 1: Write down the chemical equation. \newline % Row Count 1 (+ 1) Step 2: List down the atoms (or polyatomic ions) involved in both sides. \newline % Row Count 3 (+ 2) Step 3: Count the number of atoms on both sides. \newline % Row Count 4 (+ 1) Step 4: Compare both sides and change the coefficients (not subscripts) so that the atoms on the left side are equal to the atoms on the right side. \newline % Row Count 7 (+ 3) (Tip: Balance the {\bf{Metals}} first, then the {\bf{Non-Metals}}, and then the {\bf{Oxygen}} atoms and {\bf{Hydrogen}} atoms.) \newline % Row Count 10 (+ 3) Step 5: Double check both sides to make sure the atoms on both sides are equal.% Row Count 12 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Soluble Salts}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Soluble}} & {\bf{Insoluble}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} All nitrates & None \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Most sulfates & Lead sulfate, barium sulfate and calcium sulfate \tn % Row Count 5 (+ 3) % Row 3 \SetRowColor{white} Most chlorides, bromides and iodides & Silver chloride, silver bromide, silver iodide, lead chloride, lead bromide, lead iodide \tn % Row Count 10 (+ 5) % Row 4 \SetRowColor{LightBackground} Sodium carbonate, potassium carbonate, ammonium carbonate & Most other carbonates \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} Sodium hydroxide, potassium hydroxide, ammonium hydroxide & Most other hydroxides \tn % Row Count 16 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.4931 cm} x{3.4839 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Uses of Acids}} \tn % Row 0 \SetRowColor{LightBackground} Citric Acid & Used as a sour flavouring agent in food \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{Hydrochloric} Acid & Used as a rust remover \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Sulfuric Acid & Used in car batteries \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Nitric Acid & Used in fertilisers \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} Ethanoic Acid & Used as a food preservative \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} Carbonic Acid & Used in making soft drinks \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.59264 cm} x{3.38436 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Uses of Alkalis}} \tn % Row 0 \SetRowColor{LightBackground} Sodium Hydroxide & Used in making soap \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Calcium Hydroxide & Used in making toothpaste and to reduce acidity in soil \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} Aqueous Ammonia & Used in making fertilisers and as a bleaching agent \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} Aqueous Ammonia & Used in making fertilisers and as a bleaching agent \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} Potassium Hydroxide & Used in electroplating and in making cement and plaster \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} Magnesium Hydroxide & Used as a detergent \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.83689 cm} x{2.14011 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Strength of Acids}} \tn % Row 0 \SetRowColor{LightBackground} Strong Acids & Weak Acids \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Hydrochloric Acid & Citric Acid \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Sulfuric Acid & Tartaric Acid \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} Nitric Acid & Ethanoic Acid \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Strong Acids: \newline React very fast \& vigorously \newline Ionise completely to produce large amounts of H\textasciicircum{}+\textasciicircum{} ions \newline \newline Weak Acids: \newline React slowly \& less vigorously \newline Ionise partially to produce small amounts of H\textasciicircum{}+\textasciicircum{} ions \newline \newline {\bf{{\emph{Do not confuse the strength of an acid with the concentration of an acid. The strength tells you how many H\textasciicircum{}+\textasciicircum{} ions are produced while the concentration tells you how much of an acid is dissolved in water.}}}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.58804 cm} x{2.38896 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Strength of Alkalis}} \tn % Row 0 \SetRowColor{LightBackground} Strong Alkalis & Weak Alkalis \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Sodium Hydroxide & Aqueous Ammonia \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Potassium Hydroxide} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Calcium Hydroxide} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Strong Alkalis ionise completely to produce large amounts of OH\textasciicircum{}-\textasciicircum{} ions. \newline Weak Alkalis ionise partially to produce small amounts of OH\textasciicircum{}-\textasciicircum{} ions.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{How to Carry Out Titration}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1. For solid samples, weigh the solid and dissolve in a known volume of solution (usually 100cm\textasciicircum{}3\textasciicircum{}). \newline % Row Count 3 (+ 3) 2. Use a pipette to measure a known volume of the solution (e.g 10cm\textasciicircum{}3\textasciicircum{}) and empty into an Erlenmeyer flask. \newline % Row Count 6 (+ 3) 3. Add a few drops of indicator into the solution. \newline % Row Count 8 (+ 2) 4. Put the second chemical into a burette. This other solution will react with the synthesised chemical sample in the flask. Often the solution in the burette is an acid or alkali, and it must be of a precise, known concentration. \newline % Row Count 13 (+ 5) 5. Drop by drop, mix the chemical in the burette into the Erlenmeyer flask until the end point is reached. A colour change indicates the correct amount has been added to react completely with the chemical in the sample. \newline % Row Count 18 (+ 5) 6. Take note of the volume of the solution added from the burette.% Row Count 20 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}